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Preface

This volume gathers a number of selected contributions from the XVIII Sitges
Conference “Statistical Mechanics of Complex Networks”, held on 10-14 June
2002 in Sitges, Barcelona (Spain). The contributions collected provide a general
overview of the recent developments in the field of complex networks, concerning
in particular their application in physics, biology, and sociology.

The conference was sponsored by institutions that generously provided finan-
cial support: DGICYT of the Spanish Government, CIRIT of the Generalitat of
Catalonia, Universitat de Barcelona, and Centre Especial de Recerca (CER)
Physics of Complex Systems. The city of Sitges allowed us, as usual, to use the
Palau Maricel as the lecture hall. We are also very grateful to all those who
collaborated in the organization of the event, Drs. C.J. Pérez, A. Pérez-Madrid,
M.-C. Miguel, A. Arenas, and Profs. P. Hinggi and A. Vespignani.

Finally, we wish to express out gratitude to all the speakers and participants
in the conference, who contributed to create a high scientific level and a very
pleasant atmosphere.

Barcelona, The Editors
March 2003
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1 Introduction

Statistical physics has faced for long time the challenge to describe and under-
stand large complex systems composed by a heterogeneous set of elements that
interact mainly via non-local interactions. In this sense, while the study of their
homogeneous counterparts with local interactions has resulted in most signifi-
cative achievements (consider for example the theory of critical phenomena),
heterogeneous systems have usually been the subject of much less attention, due
to the intrinsic difficulty that their analytical treatment implies.

Last years have witnessed, however, a renewed interest in the physics of
this kind of heterogenous systems, interest born with the realization that they
can be mapped into networks, in which the vertices represent the elements and
the edges pairwise interactions between elements. This new approach — which
finds its roots in the mathematical realm of graph theory — has allowed a first
understanding of these systems in terms of complexr networks, focusing in the
study of their topology. While it represents just a first approximation, missing
many microscopic properties, this analysis is still able to provide a great deal of
information about their topological structure, which has important consequences
on the properties of dynamical processes taking place on top of them.

At first instance, the recent availability of powerful computers has lead to
a large amount of empirical studies of many real networks. The result of these
efforts has been the reconstruction of graph representations of many real tech-
nological, social, and biological networks. The statistical analysis of these maps
has unveiled the general presence of a very complex and heterogeneous topo-
logy, characterized by statistical fluctuations that extend over many orders of
magnitude. The main manifestation of this fluctuations is found in the the de-
gree distribution (the probability distribution of the number of connections of
any vertex), that in most cases exhibits a power-law behavior, lacking any cha-
racteristic length scale, and that has led to the definition of the class of scale-free
networks.

The large scale fluctuations observed in real networks are the typical sig-
nature of emergent phenomena, as observed in many complex systems subject
to a dynamical evolution. When considering networks from the perspective of
complex systems, the attention is placed in the microscopic rules that govern the
dynamics of vertices and edges. Since networks are composed by a large number
of interacting elements, the detailed characterization of the dynamics of each
element is neglected, focusing instead in the understanding of the cooperative
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2 1 Introduction

phenomena the emerge from their interactions and the statistical laws governing
the system. Such approach is analogous to the statistical physics methodology,
that has been proved extremely successful in order to link the microscopic dy-
namics and interactions of matter to the statistical regularities of macroscopic
physical systems.

Pursuing this approach, a large amount of research activity has been recently
devoted to apply the statistical physics methodology to the study of growing
complex networks. In the statistical physics framework, complex networks are
viewed as growing systems that evolve in time by adding and removing vertices
and edges. This perspective, opposite to the traditional static graph modeling
that is at the core of the classical graph theory, allows the identification of some
basic models that, while still missing many details, appear to outline the gene-
ral dynamical theory required to describe the macroscopic properties of natural
complex networks. The introduction of the statistical physics approach to the
study of complex networks has also provided new techniques and methods to
consider the effect of the network topology on different dynamical processes
taking place on top of the networks, such as the resilience to damage, and diffu-
sion or searching processes. In this case, well established techniques in statistical
physics, such as percolation theory, mean-field methods, or cellular automata
simulations, have been fruitfully used to gain a deeper understanding of the
general properties of complex networks.

Motivated by the previous considerations, we gathered several leading ex-
perts in the field of complex networks for the XVIII Sitges Conference. This
book contains a number of selected contributions that will give the reader a
general overview of the most recent developments concerning the application of
the new theory of complex networks in fields as diverse as physics, biology, and
sociology. Among the various aspects covered by the different contributions, we
can mention the description of analytical tools to characterize network models,
the description of hierarchies and correlations in real complex networks, and the
study of dynamical processes such as percolation, searching, or epidemics.

In view of the successes accomplished, and the vast array of new theoretical
and practical applications that complex networks offer for the future, we can
expect that their study will become a major area of work in the statistical
mechanics of the 21st century. We hope that this book will represent a useful
introduction to some of the most recent and interesting topics of this emerging
field.



2 Rate Equation Approach for Growing
Networks

P.L. Krapivsky and S. Redner

Center for BioDynamics, Center for Polymer Studies and Department of Physics,
Boston University, Boston MA 02215, USA

Abstract. The rate equations are applied to investigate the structure of growing net-
works. Within this framework, the degree distribution of a network in which nodes are
introduced sequentially and attach to an earlier node of degree k with rate Ax ~ k”
is computed. Very different behaviors arise for v < 1, v = 1, and v > 1. The rate
equation approach is extended to determine the joint order-degree distribution, the de-
gree correlations of neighboring nodes, as well as basic global properties. The complete
solution for the degree distribution of a finite-size network is outlined. Some unusual
properties associated with the most popular node are discussed; these follow simply
from the order-degree distribution. Finally, a toy protein interaction network model is
investigated, where the network grows by the processes of node duplication and par-
ticular form of random mutations. This system exhibits an infinite-order percolation
transition, giant sample-specific fluctuations, and a non-universal degree distribution.

2.1 Introduction

In this contribution, we apply tools from statistical physics, in particular, the rate
equations, to quantify geometrical properties of evolving networks [[]. The utility
of the rate equations have been amply demonstrated for diverse non-equilibrium
phenomena, such as aggregation [2], coarsening [3], and epitaxial surface growth
[]. We will argue that the rate equations are a similarly powerful yet simple
tool to analyze growing network systems. In addition to providing comprehensive
information about the node degree distribution, the rate equations can be readily
adapted to treat the joint order-degree distribution, correlations between node
degrees, global properties, and a variety of intriguing fluctuation effects.

We will focus on two classes of models. In the first, which we simply term the
growing network, nodes are added sequentially and a single link is established
between the new node and a pre-existing node according to an attachment rate
Ay, that depends only on the degree of the “target” node (Fig. 21]). Here node
degree is the number of links that impinge on the node. This appealing mo-
del, first introduced by Simon [5] and rediscovered by Barabdsi and Albert [6],
has become extremely fashionable because of its rich phenomenology and timely
applications. Examples include the distribution of biological genera, word fre-
quencies, publications, urban populations, income [5],[7], and the link distribution
of the world-wide web [8] [9] [10].

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 3-22, 2003.
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4 P.L. Krapivsky and S. Redner

new node
addition p/N duplication 1-§

~

- target node

S

Fig. 2.1. a Growing network. Nodes are added sequentially and a single link joins
a new node to an earlier node. Node 1 has degree 5, node 2 has degree 3, nodes 4
and 6 have degree 2, and the remaining nodes have degree 1. b Protein interaction
network. The new node duplicates 2 out of the 3 links between the target (shaded)
and its neighbors. Each successful duplication occurs with probability 1 —§ (thick solid
lines). The new node also attaches to any other node with probability 8/N (heavy
dotted lines). Thus three previously disconnected clusters are joined by the complete
event

The second class of models are inspired by protein interaction networks,
where the nodes are individual proteins and the links represent a functional
relationship between two proteins in an organism. Much effort has been devoted
to infer the structure of such networks [11} [12, [13] and to formulate models
that account for their evolution [14] [15] [16], [17] [18] [19]. In the model discussed
here [17] [18], nodes are added sequentially and the new node may “duplicate”
a randomly chosen target, and the new node can link to any other node with
with a small probability (Fig. [2.I)). In the duplication step, the new node links
to each of the neighbors of the target with probability 1 —§. Thus the duplicate
protein is functionally similar to the original [14]. The second process can be
viewed as mutation in which a protein can becomes functionally linked to a
random subset of other proteins. By this latter process, an arbitrary number
of clusters can merge when a single node is introduced. As we shall discuss,
this many-body merging leads to an infinite-order percolation transition as a
function of the mutation rate. While the applicability of this model to describe
real protein networks is still not settled [14], it is a useful starting point for
theoretical analysis.

Our basic goal is to quantify the structure of these two basic networks by the
rate equation approach.

2.2 Structure of the Growing Network

2.2.1 The Degree Distribution

A fundamental characteristic of any random network is the node degree distri-
bution Ni(N), defined as the number of nodes with k links in a network that
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contains N total nodes. To determine this distribution, we write the rate equati-
ons that account for its evolution after each node is introduced. For the growth
process in Fig. 20k, these rate equations are [20] 2], [22)

ANy _ Ag-1Nk—1 — AxNg
dN A

The first term on the right, Ap_1Nk_1/A, accounts for processes in which a node
with k& — 1 links is connected to the new node, thus increasing Nj by one. Since
there are N;_; nodes of degree k — 1, such processes occur at a rate proportional
to Ap—1Nk—1, while the factor A(N) = > .5, A;N;(N) converts this rate into
a normalized probability. A corresponding role is played by the second (loss)
term on the right-hand side. Here Ay N /A is the probability that a node with k
links is connected to the new node, thus leading to a loss in Ni. The last term
accounts for the introduction of a new node with degree one.

Let us first determine the moments of the degree distribution, M, (N) =
> ;51" Nj(N). Summing (2.I) over all k, gives My(N) = 1. This accords with
the definition that Mqy(N) = >, Nj is just the total number of nodes N in the
network. Similarly, the first moment obeys M; (N) = 2, or M;(N) = M;(0)+2N.
Clearly this quantity must grow as 2NN, since introducing a single node creates
two link endpoints. Thus the first two moments are independent of the attach-
ment kernel Ay and grow linearly in N. On the other hand, higher moments and
the degree distribution itself depend in an essential way on Ay.

For general attachment kernels that do not grow faster than linearly with
k, it can be easily verified that the asymptotic degree distribution and A(N)
both grow linearly with N. Thus substituting Ni(N) = N ny and A(N) = uN
into (2:I)) we obtain the recursion relation ny = ng_1Ax_1/(p + Ax) and ny =
w/(p + Aq). Solving for ny, we obtain the formal solution

+ Ok1- (2.1)

k —1
u 1
ng = — 1+ — . 2.2
g Akj1< Aj> 22)

To complete this solution, we need the amplitude p. Using the definition p =
>_j>1 Ajnj in ([Z2), we obtain the implicit relation

co k —1
SI(+5) - 23
A 4
k=1j=1
which shows that the amplitude p depends on the entire attachment kernel.
For the generic case Ay ~ k7, we rewrite the product in ([ZZ) as the expo-
nential of a sum of logarithms. In the continuum limit, we convert this sum to
an integral, expand the logarithm to lowest order, and evaluate the integral to
yield:
k=7 exp {fu (%)} ,0<y <1
Mg~ NkE™, v=14pu>2, v =1; (2.4)
singular v > 1.
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That is, for all 0 < v < 1, the degree distribution is a robust stretched expo-
nential (and pure exponential for v = 0). Conversely, for v > 1 a phenomenon
analogous to gelation occurs in which a single node has almost all of the network
links [20, 22]. The regime > 1 actually has an infinite sequence of transitions.
For v > 2 all but a finite number of nodes (in an infinite network) are linked to
the “gel” node which has the rest of the links of the network. For 3/2 < v < 2,
the number of nodes with two links grows as N2~7, while the number of nodes
with more than two links is again finite. For 4/3 < v < 3/2, the number of
nodes with three links grows as N3727 and the number with more than three
is finite. Generally for (m + 1)/m < v < m/(m — 1), the number of nodes with
more than m links is finite, while Nj, ~ N¥=* =17 for k < m.

The linear kernel (v = 1) is on the boundary between these two generic beha-
viors and leads to a degree distribution that depends on details of the attachment
rate. In fact, the exponent ¥ = 1+ p can be tuned to any value larger than 2 [22].
In the special case of the strictly linear kernel, A; = k, the degree distribution
has the simple form

4

ZX%TFESGZETS'“:kfs' (2.5)

ng =

To illustrate the vagaries of asymptotically linear kernels, consider the shifted

linear kernel A = k + A. For this case, note that A(N) = >, A;N;(N) gives

A(N) = Mi(N)+ AMy(N). Using A = uN, My = N and M; = 2N, we get

=24\ Hence v =14 = 3+ A. Thus an additive shift in the attachment

kernel profoundly affects the asymptotic degree distribution. From (Z32), the
degree distribution is

LB+20) T(E+N) o aiy

me= QN TaEN T3+ 20

(2.6)
Finally, we discuss a simple extension in which a newly-introduced node
links to exactly p earlier nodes [6]. For the linear attachment kernel, the degree
distribution Ni (V) (now defined only for k£ > p) obeys the rate equation
de p
— = —[(k—1)Ni_1 — kN, Ok.p- 2.7
Following the basic approach outlined after (Z3)), we find that the asymptotic
degree distribution, ng = Ny /N, is [22]

2p(p +1)

Tkt Dk +2)

for k>p. (2.8)
Thus for the strictly linear attachment kernel, the number p of links introduced
at each node creation event does not affect the exponent of the degree distri-
bution. Generally, however, this multiple link construction affects the degree
distribution. For example, for the shifted linear kernel, we find
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I(k+ )
= t. for k >
nyg = cons XI’(kz—l—S—i—)\—i—)\/p) or k> p,
—1
p+ A
= 1 2.
m=(14r555) (29

whose asymptotic behavior is nj ~ k~(3+t»P) Thus the degree distribution ex-
ponent depends strongly on p. This result again shows that fine details of the
growth process can be vitally important when the attachment rate is asympto-
tically linear.

2.2.2 Order Distribution

In addition to node degree, we further characterize a node according to its or-
der of introduction by associating an order index .J to the J' node that was
introduced into the network [22] 23]. Let Ny (N, J) be the probability that the
J*™ node has degree k when the network has N total nodes. The original degree
distribution may be recovered from this joint order-degree distribution through
Ni(N) = Z]}[:l Ni(N, J). The joint distribution evolves according to the rate
equation

+0r10(N — ). (2.10)

0 9 N, = Ap N1 — ANy,
ON 097 )"* A

The second term on the left account for the order index evolution. We assume
that the probability of linking to a given node depends only on its degree and
not on its order.

The homogeneous form of this equation suggests that the solution should
depend on the single variable x = J/N. Writing Ny (N, J) = fi(z), converts
(B10) into an ordinary, and readily soluble, differential equation [22]. For the
two generic cases of Ay = k and Ay = 1, the order-degree distributions are:

k—1
ROy ae
Ni(N, J) = (2.11)
J [n(N/ D) o
N (k—1) R

For the average order index (Ji) = >, J Ni(N, J)/Ni(NN) of a node of degree
k, we find
12
(Je) _ J (k+3)(k+4) (2.12)
N
(2/3)k A = 1.

Similarly, the average degree (kj) = >, k Ni(N,J) of a node of order index J
is
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(J/N)=1/2 Ay = F,
(k) = (2.13)
In(N/J) +1 Ay =1

The main messages from these results are that for Ay = k, high degree nodes
must have been introduced early in the network development. Conversely, for
the case of random attachment, A = 1, high degree nodes could also have
been introduced relatively late in the network history. This difference plays a
crucial role in determining the properties of the node with the highest degree

(Sect. 232).

2.2.3 Degree Correlations

The rate equation approach also allows us to obtain degree correlations between
connected nodes [22]. These develop because a node with large degree is likely
to be old [22, 24, 25, [26]. Thus its ancestor is also old and hence has a large
degree. To quantify these degree correlations, define Cy;(N) as the number of
nodes of degree k that attach to an ancestor node of degree | (Fig. Z2a). For
example, in the network of Fig. 1] there are N; = 6 nodes of degree 1, with
C1o = C13 = C15 = 2. There are also No = 2 nodes of degree 2, with Cy5 = 2,
and N3 = 1 nodes of degree 3, with C35 = 1.

For simplicity, we consider the linear attachment kernel for which the degree
correlation Ci(N) evolves according to

dCr
dN

The processes that gives rise to each term in this equation are illustrated in
Fig. 23l The first two terms on the right account for the change in Cj; due to
the addition of a link onto a node of degree k — 1 (gain) or k (loss) respectively,
while the second set of terms gives the change in Cy; due to the addition of a link
onto the ancestor node. Finally, the last term accounts for the gain in Cy; due to
the addition of a new node. A crucial feature of this equation is that it is closed;
the 2-particle correlation function does not depend on 3-particle quantities.

As in the case of the node degree, the N dependence is simply Cy; = Ncg;.
This reduces (2.14) to an N-independent recursion relation. While the details of
the solution are unwieldy [22], the asymptotic solution is relatively simple in the
scaling regime, k — oo and [ — oo with y = [/k finite:

1 dy(y +4)
(T+y)*~

v L

k l

My = (k—l)Ck_Ll — kCp + (l—l)CkJ_l —1Cy + (1—1)01_1 Ok1- (2.14)

cu =k~ (2.15)

Fig. 2.2. Definition of the node degree correlation Cy; for k =3 and [ = 4
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W Ml M Ml
AN ™~ ™~ ™~ O\
® (i) (i) @iv) )
Fig. 2.3. Processes that contribute ((i)—(v) in order) to the terms in the rate equation

(2I4) for the case k =3 and I = 4 ((i)—(iv)). The newly-introduced node and link are
shown dashed. The last case (v) arises only for k =1

For fixed large k, the distribution cy; has a maximum at y* = (v/33 — 5)/2 =
0.372. Thus a node of degree k is typically attached to an ancestor node whose
degree is 37% that of the daughter node. In general, when k and [ are both large
and their ratio is different from one, the limiting behaviors of cg; are

16 (1/k°) 1<k,
e {4/(/<;2l2) > k. (2.16)

Here we explicitly see the absence of factorization in the degree correlation:
Ckl 7é nEn; o< (k 1)73.

2.2.4 Global Properties

The rate equations can be adapted to determine the in-component and out-
component of the network with respect to a given node x [22]. The former is just
the set of nodes that point to the node, plus all nodes that refer these daughter
nodes, etc. The latter are the set of nodes that can be reached by following
directed links that emanate from x (Fig.[24]). We study the distribution of these
component sizes for the constant attachment kernel, Ay = 1, because many
results about components are independent of the form of the kernel and thus it
suffices to consider the simplest situation.

/ﬁ ; in-component
q i

Fig. 2.4. In-component and out-components of node x
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The In-Component

The number of in-components with s nodes, Is(N), satisfies the rate equation

dly,  (s—1)Is_1 — sl
N = " + 0s1. (2.17)

Here the loss term accounts for processes in which the attachment of a new node
to an in-component of size s increases its size by one. This gives a loss rate
proportional to s. If there is more than one in-component of size s they must be
disjoint, so that the total loss rate for I4(N) is simply sI5(N). A similar argument
applies for the gain term. Dividing by A(N) =3, A;N;(N) converts these rates
to probabilities, where A(N) = My(N) ~ N for the constant attachment kernel.

It is again easy to verify that each I; grows linearly in V. Thus we substitute
I;(N) = Nig into (2I7) to obtain is = is—1(s — 1)/(s + 1) and i; = 1/2. This
immediately gives

1

G (2.18)

is =
The s~ 2 tail for the in-component distribution is independent of the form of the

attachment kernel [22]. The exponent value also agrees with recent measurements
of the web [10].

The Out-Component

The complementary out-component (Fig. Z4)) from each node can be determined
by mapping the out-component to an underlying network “genealogy”. We build
a genealogical tree for the growing network by taking generation g = 0 to be
the initial node. Nodes that attach to those in generation g are defined to form
generation g + 1; the node index does not matter in this characterization. For
example, in the network of Fig. 2.1h, node 1 is the ancestor of 6, while 10 is the
descendant of 6; there are 5 nodes in generation g = 1 and 4 in g = 2 (Fig. 2.5).

The genealogical tree is convenient because the number O, of out-components
with s nodes equals L,_1, the number of nodes in generation s — 1 in the tree

g=0

b e
Job b

Fig. 2.5. Genealogy of the network in Fig. [Z:Th. The nodes indices indicate when each
is introduced. The nodes are also arranged according to generation number
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(Fig. 25). We therefore compute L,(N), the size of generation g when the net-
work has N total nodes. We again treat the constant attachment kernel; more
general cases are treated in [22]. We determine Ly(N) by noting that Lg(N)
increases when a new node attaches to a node in generation g — 1. This oc-
curs with rate Ly_1 /My, where My(N) =1+ N is the number of nodes. Thus
L,(N) = L, _1/(1+ N), with solution Ly(7) = 79/g!, where 7 = In(1 + N). Thus

Os(r) =7"1/(s = ). (2.19)

The generation size Ly(N) rapidly grows with g for g < 7, and then decreases
and becomes of order 1 when g = e7. To accommodate a network of N nodes,
the genealogical tree uses approximately er generations. Therefore the network
diameter is 2er = 2eln N, since the maximum distance between any pair of
nodes is twice the distance from the root to the last generation.

2.3 Finiteness, Fluctuations, and Extremes

2.3.1 Role of Finiteness

Thus far, we have focused on asymptotic properties when the number of nodes
is sufficiently large that the ansatz N = N ny, is valid. We now consider the role
of finiteness on growing networks with attachment rate Ay = k+ A (A > —1)
[27, 2R]. This interpolates between linear attachment (for A = 0) to random
attachment, Ay = 1 (for A — c0).

As quoted in (Z0), the degree distribution of a network with N > 1 nodes
is Ni(N) oc Nk~3+%) for attachment rate Ay = k 4+ \. However, for finite N
the degree distribution must eventually deviate from this prediction because the
maximal degree cannot exceed N. To establish the range of applicability of (2.6,
we estimate the largest degree in the network, k.« by the extreme statistics
criterion ) ;. o,  Ni(N) = 1 [29]. This yields kmax o NY/C+N | The degree
distribution should therefore deviate from (Z8) when k becomes of the order of
kmax- The existence of a maximal degree suggests that the degree distribution
should have the finite-size scaling form (see also [27] 28] 30, 311 [32])

Nk(N) = NnkF<£)a §= k/kmax- (2'20)

To determine the finite-IV behavior of the network, we start by writing the
exact recursion relation for the degree distribution after a single node is added:
(k= )Ne_1 (V) — ENG(N)

2N '

Nk(N+1):Nk(N)+ (2.21)

To solve this recursion we introduce the two-variable generating function [28§]

N(w, z) = Z ZNk(N)walzk,

N=1k=1
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F(&)

Fig. 2.6. a Normalized degree distribution for networks of 10%, 103, ... ,10° nodes
(upper left to lower right), with 10° realizations for each N, for Ay = k for a “triangle”
initial condition. The dashed line is the asymptotic result ny = 4/[k(k + 1)(k + 2)];
the last three data sets were averaged over 3, 9, and 27 points, respectively. b The
corresponding scaling function as defined in F(€) in @20) from simulation data of 10°
realizations of a network with N = 10* nodes for the “dimer” initial condition (circles).
The solid curve (red) is the analytical result of (2.24)

to transform (221)) into

(2(1w)£u+z(lz)§z2)/\/(13iu>2. (2.22)

The exact solution to this equation can be obtained by standard methods and
has the unwieldy form [28],

(3—227Y 1 2(z71 —1) 2(1 —w)~/?
N(w,2) = (1 —w)? _1—w+(1—w)3/2 (z71=1)+(1—w)/?
2(z71—=1)2 1/2
BTN In |1 -2 4 21— w)' ] (223)

By expanding N (w, z), we can determine all the Ny (N). By this approach, we
find that the scaling function defined in (2:20) is

F(&) = erfc (g) + 25\/%53 e /4 (2.24)

where erfc(x) is the complementary error function. A related result was found
previously in [27]. This scaling function quantitatively accounts for the large-
degree tail of the degree distribution (Fig. ZX6b).
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2.3.2 Extremes and Lead Changes

We now investigate properties associated with the statistics of the node with
the largest degree — the most popular node [33]; see also [34]. The degree of this
node can be determined by a simple extreme statistics argument [29] [33] [34].
Here we discuss related, socially-motivated questions of the identity of the most
popular node (the leader). These include the dependence of the leader identity
on network size, the rate at which lead changes occur, and the probability that
a leader retains the lead as a function of network size.

Leader Identity

We first determine the order index of the leader node. To start with an unambi-
guous leader, we initialize the system with 3 nodes, with the initial leader having
degree 2 (and index 1) and the other two nodes having degree 1. A new leader
arises when its degree exceeds that of the current leader. For the linear attach-
ment rate, Ay = k, the average order index of the leader Jigaq(IN) saturates to a
finite value of approximately 3.4 as N — oo (Fig. B7h). With probability ~ 0.9,
the leader is one of the 10 earliest nodes, while the probability that the leader is
not among the 30 earliest nodes is less than 0.01. Thus only the earliest nodes
have appreciable probabilities to be the leader; the rich really do get richer. In
the case of Ay = k + A, the average index of the leader also saturates to a finite
value that is an increasing function of .

For random attachment (A = 1), the leader index grows as Jigaq(N) ~ NV
with ¢ & 0.41 (Fig. Z7). The leader is still an early node (since ¢ < 1), but
not necessarily one of the earliest. From our simulations, a node with index
greater than 100 has a probability of approximately 10~2 of being the leader for

10 T 6 T
o Ak:1 oo o Ak=1 ooo
AAk:k oO AAk:k OOOAAA
o0 Lo st
oO 4+ ooAAA 7
o
—~ oo —_ OOAA
Z 10t .° 1 Z a%a®
2 o — 0%n
B o 0fa
[y 0° 2k 0S8 4
ooo WAADNAAABAAAAALY %%XA
OZAAAAAA OA% (b)
ofa® (@) o®
0
10 L L L 1 0 L 1 I |
10 100 100 100 10t 10 10 10 100 100 10" 10°
N N

Fig. 2.7. a Average index of the leader Jiead(IN) as a function of the total number of
nodes N for 10° realizations of a growing network. Shown are the cases of attachment
rates Ay = 1 and Ay = k. b Average number of lead changes L(N) as a function of
network size N for 10° realizations of the network for Ay = 1 and A = k
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a network of 10° nodes. Thus, in random attachment, the order of node creation
plays a significant, but not deterministic, role in the identity of the leader node.

For constant attachment rate, the identity of the leader can be simply read off
from (2.13); thus the index of the leader node, Jieaq(N) = N(2/3)Fmax [33]. We
estimate the maximum degree from the extremal criterion D, -,  Ni(N) = 1.

Using Ny (N) = N/2*, we find 2Fmax x~ N, or kpax ~ In N/1In 2. Therefore

1
Jiead(N) o N, with ¢ =2~ fn‘;’ ~ 0.415 037,
n

in excellent agreement with our numerical results.
For the linear attachment rate, (2.13) now gives J,(N) ~ 12N/k?. Since
Ni(N) ~ 4N/k?, the extremal criterion Y, -,  Ni(N) = 1 now gives kmax ~

V'N. Therefore Jigaa(N) ~ 12N/k2,,. = O(1) indeed saturates to a finite value.
A similar result holds in the general case Ay = k + A. Thus the leader is one of

the first few nodes in the network.

Lead Changes

The average number of lead changes L(NN) grows logarithmically in N for both
Ay = 1land Ay, = k (Fig.21), although the details of the underlying distributions
of the number of lead changes, P(L), are quite different. For Ay, = 1, P(L) has a
sharp peak, while for Ay, = k, P(L) has a significant tail that stems from repeated
lead changes among the two leading nodes. We also observe numerically that the
number of distinct nodes that enjoy the lead grows logarithmically in N.

This logarithmic behavior can be easily understood. For A; = 1, the number
of lead changes cannot exceed the maximal degree kmax ~ In N/In2. For the
general case Ay = k + A, when a new node is added, the lead changes if the
leadership is currently shared between two (or more) nodes and the new node
attaches to a co-leader. The number of co-leader nodes (with degree k = kpax)
is N/k3+2 while the probability of attaching to a co-leader is kpax/N. Thus the

max?’

average number of lead changes satisfies

d kmax N

an M TN

(2.25)

Since kmax grows as NG+ - (@2H) reduces to dL(N)/dN o N=! or L(N) o
In N. This argument can be adapted to arbitrary attachment rates that do not
grow faster than linearly with k.

Fate of the First Leader

Finally, we study the survival probability S(/N) that a node that was initially in
the lead (has the maximum degree) remains in the lead as the network evolves.
For Ax =k + X with A < oo, S(N) is non-zero as N — oo (Fig.[2.8). Thus the
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10

S(N)

107 ¢ :

I I I
10 0 2 4 6 8

Fig. 2.8. Probability that the first node leads throughout the evolution for 10° rea-
lizations for N < 107 for A = k (upper), and N < 108 for Ay = 1 (lower)

rich get richer holds in a strong form — the lead never changes with a positive
probability.

For constant attachment rate the situation is more interesting, as being rich
at birth is not as deterministic an influence as in the case of linear attachment.
Numerically, S(IN) decays very slowly to zero as N — oo (Fig. [Z8); a power law
S(N) o< N~% is a reasonable fit, but the local exponent is still slowly decreasing
at N ~ 10® where it has reached ¢(IN) ~ 0.18. To understand this behavior,
consider the degree distribution of the first node. This quantity satisfies the
recursion relation

Pk, N) = %P(k— LN —1)+ %P(k,]\f— 1) (2.26)

which reduces to the convection-diffusion equation

0 0 1 0%P
(81nN * 8k> P=5 % (227)

in the continuum limit. The solution is a Gaussian

1 (k —InN)?
Wora T exp {—2 v } . (2.28)

Thus the degree of the first node grows as In N, with fluctuations of the order
of VInN. On the other hand, from the degree distribution Nj(N) = N/2F
the maximal degree grows as kmax = vIn N with v = 1/In2 &~ 1.44, and its
fluctuations are negligible.

We now estimate S(INV) as the probability that the degree of the first node ex-
ceeds the maximal degree. For large N, this criterion, S(N) ~ >, -, P(k, N),
becomes B

P(k,N) =
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© gk (k—lnN)2}
S(N oc/ ———ex {—
() vInN VIn N P 2In N

x N~ (InN)~/2, (2.29)

with ¢ = (v —1)?/2 &~ 0.0979.... The recursion (2.26) can, in fact, be solved
exactly and gives P(k, N) = [Y]/N!, for the dimer initial condition, where [}]
is the Stirling number of the first kind [35]. Using this instead of the Gaussian
approximation leads to the exact exponent ¢ = 1 — v + vlnv =~ 0.08607. In
either case, the logarithmic factor leads to the very slow approach to asymptotic

behavior seen in Fig. 2.8l

2.4 Protein Networks

Finally, we study a toy protein interaction network model that evolves by the
biologically-inspired processes of protein duplication and subsequent mutation,
as illustrated in Fig. 2:Ib [14] [16] [I7, [I§]. By adapting the rate equation to ac-
count for these growth steps, we show that: (i) the system undergoes an infinite-
order percolation transition as a function of mutation rate, with a rate-dependent
power-law cluster-size distribution everywhere below the threshold, (ii) there are
giant fluctuations in network structure and no self-averaging for large duplica-
tion rate, and (iii) the degree distribution has a power-law tail with a peculiar
rate-dependent exponent.

2.4.1 Infinite-Order Percolation Transition

The protein network has rich percolation properties because the mutation pro-
cess in Fig. ZIb can lead to an arbitrary number of clusters being joined in a
single step of the evolution. To study these percolation properties, we consider
the simpler limit where mutations can occur, but no duplication (5 > 0,0 = 1).
Let Cs(N) be the number of clusters of size s > 1. This distribution obeys the
rate equation

dC, C, g " 50,
AN :_5SN +n§;;ﬁe 31 jN : (2.30)

S81:8p j=1

where the sum is over all s; > 1,...,s, > 1 such that s;+---+s,+1=s. The
first term on the right accounts for the loss of Cy due to the linking of a cluster
of size s with the newly-introduced node. The gain term accounts for all possible
merging processes of n initially separated clusters whose total size is s — 1.

Employing the now familiar ansatz that Cs(IN) = Nc¢s, and introducing the
generating function g(z) = ) o, scs e®*, (2.30) becomes

g=—B¢ + 1+ Bg)e P71, (2.31)
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where ¢’ = dg/dz. To detect the percolation transition, we use the fact that
9(0) = > scs is the fraction of nodes within finite clusters. Thus in the non-
percolating phase g(0) = 1 and the average cluster size (s) = Y s%c, = ¢/(0),
while in the percolating phase the size of the infinite cluster (the giant compo-
nent) is NG = N(1 — ¢g(0)). To determine ¢'(0), we substitute the expansion
g(z) = 1+ 2¢’(0) + ... into 23I) and take the z — 0 limit. This yields a
quadratic equation for ¢’(0), with solution

_1-26-/1-4p
= 2 .
This real only for § < 1/4, thus identifying the percolation threshold as 8. = 1/4.

For 8 > (3., we express ¢’ (0) in terms of the size of the giant component by setting
2z =0 in 231) to give

g'(0) = (s)

(2.32)

G 4 G-
9%0):5(1—if26;' (2.33)

As B — B, we use G — 0 to simplify [233) and find (s) — (1 — £.)3:2 = 12.
On the other hand, (232) shows that (s) — 4 when 8 — (. from below. Thus
the average size of finite clusters jumps discontinuously from 4 to 12 as § passes
through g, = 1/4.

The cluster size distribution c¢s exhibits distinct behaviors below, at, and
above the percolation transition. For § < f., the asymptotic behavior of ¢,
can be read off from the generating function as z — 0. If ¢, has the power-law
behavior ¢ ~ Bs™7 as s — 00, then the corresponding generating function g(z)
has the small-z expansion g(z) = 1+ ¢'(0)z + B['(2 —7) (—2)" "2 +.... The
regular terms are needed to reproduce the known zeroth and first derivatives
of the generating function, while the asymptotic behavior is controlled by the
dominant singular term (—z)™~2. Substituting this expansion into (Z31]) we find
that the dominant terms are of the order of (—z)™~3. Balancing all contributions
of this order gives

2
7_1+1_m. (2.34)
Thus a power-law cluster size distribution with a non-universal exponent arises
for all B < B; that is, the entire range 8 < (. is critical.

At the transition, (2:34)) gives T = 3. However, ¢s oc s72 cannot be correct as
it implies that ¢’(0) diverges. The above expansion of the generating function is
also not valid for 7 = 3. As in other such situations, we anticipate a logarithmic
correction. A detailed analysis of the generating function under this assumption
gives [18]

Cs~ —5——5 as §— 00. (2.35)
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The size of the giant component G(3) is obtained by solving (2:31]) near
z = 0. A detailed analysis shows that near 3.

7r
G(f) x exp < m) , (2.36)
so that all derivatives of G(f3) vanish as 8 — (.. Thus the transition is of infi-
nite order. Similar behaviors were observed [23], [36] [37, [38] for growing network
models where single nodes and links were introduced independently. This ge-
neric growth mechanism seems to give rise to fundamentally new percolation
phenomena.

Giant Fluctuations

In the complementary limit of no mutations (8 = 0), individual realizations
of the network evolution fluctuate strongly. We can understand the underlying
mechanism for these fluctuations most directly by studying the limit of deter-
ministic duplication (6 = 0), where all the links of the duplicated protein are
completed [I8]. There is still a stochastic element in this growth, as the node
to be duplicated is chosen randomly. Consider the generic initial state of two
nodes that are joined by a single link. We denote this graph as K ;, following
the graph theoretic terminology [39] that K, ,, is the complete bipartite graph
in which every node in the subgraph of size n is linked to every node in the
subgraph of size m. Duplicating one of the nodes in K; ; gives Ko or Kj o,
equiprobably. By continuing to duplicate nodes, it is easy to verify that at every
stage the network always remains a complete bipartite graph, say K y—, and
that every value of k = 1,... ;N — 1 occurs with equal probability (Fig. 23I).
Thus the degree distribution remains singular — it is always the sum of two delta
functions! For fixed IV, an average over all realizations of the evolution gives the
average degree distribution

(Ny) =2 (1 - J]ff_ll) : (2.37)

n
_ Kn+1,m prob. —

XK

prob.

) n,m+1
n sites

degree m I 'msites
degree n

Fig. 2.9. Evolution of the complete bipartite graph K,, . after one deterministic
duplication. Only the links emanating from the top nodes of each component are shown
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This loss of self averaging is generic; different realizations of the growth lead
to statistically distinguishable networks for any initial condition. Similar giant
fluctuations also arise in the general case of imperfect duplication where § > 0
[18].

2.4.2 Non-universal Degree Distribution

Finally, consider the evolution when both incomplete duplication and mutation
occur (§ < 1, 8 > 0). In each growth step, the average number of links L increases
by 8+ (1 —9)D (Fig.2Ib), where D is the average node degree of the network.
Therefore, L = [ + (1 — 0)D]N. Combining this with D = 2L/N gives [16), [17]

20

a result that applies only when § > 6. = 1/2. Below this threshold, the number
of links grows as

dL L
o 1-6)= :
W a0 L, (2.39)
and combining with D(N) = 2L(N)/N, we find
finite §>1/2,
D(N)={ In N 5=1/2, (2.40)

const. x N1720  § < 1/2.

Without mutation (3 = 0) the average node degree always scales as N172% so
that a realistic finite average degree is recovered only when § = 1/2. Thus muta-
tions play a constructive role, as a finite average degree arises for any duplication
rate § > 1/2.

We now apply the rate equations to study the degree distribution Ny (N) for
this case of § > 1/2 and # > 0. The degree k of a node increases by one at a
rate Ay = (1 — 6)k + 8. The first term arises because of the contribution from
duplication, while mutation leads to the k-independent contribution. The rate
equations for the degree distribution are therefore

AN _ Ag-1Nk—1 — AxNg
dN N

+ Gy. (2.41)

The first two terms account for processes in which the node degree increases by
one. The source term G describes the introduction of a new node of k& links,
with a of these links created by duplication and b = k — a created by mutation.
The probability of the former is > ., ng(3)(1 — §)*6°~, where n, = N;/N
is the probability that a node of degree s is chosen for duplication, while the
probability of the latter is 3” e#/bl. Since duplication and random attachment
are independent processes, the source term is
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2
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Fig. 2.10. The degree distribution exponent + as a function of § from the numerical

solution of (247

= > Zns( ) §)26° a%) . (2.42)

a+b=k s=a

Substituting Ni(IN) = N ny, into the rate equations yields

p+1 _ B Gk

Since GG, depends on n, for all s > k, the above equation is not a recursion.
However, for large k, we reduce it to a recursion by noting that as k — oo, the
main contribution to the sum in (242]) arises when b is small. Thus «a is close
to k, and the summand is sharply peaked around s ~ k/(1 — ). We may then
replace the lower limit by s = k, and n, by its value at s = k/(1 — ¢§). Further,
if ng decays as k=7, we write ny = (1 — §)"ny and simplify Gy to

G (1=0)ngy (Z) (1 —8)ka 3" %:) e’
s=k '
= (1-6)"ny, (2.44)

since the former binomial sum equals (1 — ).
These steps reduce (2.43) to a recursion, from which we deduce that n; has
the power-law behavior ny ~ k=7, with v determined from [L8] [40]

(6) =1+ ﬁ —(1—9)772. (2.45)
The exponent v has a strong dependence on § (Fig. ZI0). Further, since the re-
placement of ng by (1—4)7ny is valid only asymptotically, the degree distribution
should converge slowly to the predicted power law form. This slow approach to
asymptotic behavior is observed in large-scale simulations [18]. The correspon-
ding exponent v(9) is independent of the mutation rate § but depends sensitively
on the duplication rate. Nevertheless, the presence of mutations (8 > 0) is vital
to suppress the non-self-averaging as the network evolves and thus make possible
a smooth degree distribution.
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2.5 Outlook

We hope that the reader is persuaded that the rate equations are a powerful,
yet readily applicable tool, to investigate the structure of growing networks. For
incrementally growing networks, we have obtained rather complete results for the
degree distribution and some of the most important ensuing consequences. We
also studied a toy protein interaction network model that evolves by duplication
and mutation. In the absence of duplication, the network undergoes an infinite-
order percolation transition as a function of the mutation rate. In the absence of
mutation, the network exhibits giant sample-specific fluctuations. It is only with
the inclusion of mutations that robust and statistically similar networks can be
generated.

In summary, the rate equation approach is well-suited to treat a wide range
phenomenology associated with evolving networks. Its full potential in this field
is just starting to be fully exploited.

The work on protein networks was in collaboration with Byungnam Kahng
and Jeenu Kim. This research was supported in part by NSF grant DMR9978902.
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Abstract. Scale-free networks are networks with a scale-free degree distribution, i.e.,
where the distribution of the number of links per node is a power-law, p(k) = ck™. We
review results for the properties of such networks, emphasizing the structural properties
of these networks. We begin with normal random scale-free networks and present their
percolation properties. We also review results for directed scale-free networks and their
percolation properties. Finally we present a study of the possibility of embedding scale-
free networks in a lattice.

3.1 Random Scale-Free Networks

The study of random network models began with Erdés and Rényi [T 2] B].
They studied models of networks with randomly distributed links. Those models
lead to Poisson degree distributions [4]. Due to the development of computers,
allowing the analysis of large amounts of data, and the formation of large scale
networks, such as the Internet and WWW, some analysis of real world networks
has been done in the last decade [B[6] [7, 8, [9]. This research lead to the conclusion
that real world networks are not described correctly by the ER model. The main
difference found was that the degree distribution of real world networks studied
was found to be very broad rather than the narrow Poisson distribution. Many
of the networks studied can be fitted with a scale-free degree distribution. In
this chapter we will elaborate on the properties of scale free networks.
A scale free network is a network having a degree distribution:

P(k) = ck™, (3.1)

where A is the exponent and c is an appropriate normalization factor. The dis-
tribution is limited by the lower and upper cutoffs, which we will denote by m
and K, respectively. The unique properties of this distribution stem from the
fact that all moments with n > A —1 diverge with K (which is usually increasing
with the size of the network).

3.1.1 Percolation Threshold

Percolation theory deals with the cluster structure of networks when a fraction
of the sites or bonds is removed. A spanning cluster (or a “giant component”

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 23-45, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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in the terminology of random graphs) is a cluster of connected sites (i.e. where
there is a path from each site to each other) of the order of the size of the entire
network. Most standard treatments of percolation deal with lattices and regular
graphs. However, a similar treatment can be applied to random networks.

For a general random network having degree distribution P(k) to have a
spanning cluster, a site which is reached by following a link from this cluster
must have at least one other link on average to allow the cluster to exist. For
this to happen the average degree of a site must be at least 2 (one incoming and
one outgoing link) given that the site i is connected to j:

(kili < 5) = kiP(kili + j) = 2. (3:2)
ki

Using Bayes rule we get
P(kili <> j) = P(ki,i <> )/ P(i > j) = P(i < jlki)P(ki)/P(i < j),  (3.3)

where P(k;,i <> j) is the joint probability that node ¢ has degree k; and that
it is connected to node j. For randomly connected networks (neglecting loops)

P(i < 7)) =(k)/(N —1) and P(i < jl|k;) = k;/(N — 1), where N is the total
number of nodes in the network. Using the above criteria (3.2)) reduces to [10} [11]:
(K?)

) 2, (3.4)
at the critical point. A spanning cluster exists for graphs with « > 2, while
graphs with x < 2 contain only small clusters whose size is not proportional to
that of the entire network. This criterion was derived earlier by Molloy and Reed
[10] using a somewhat different arguments.

The negligence of loops can be justified below the threshold since the probabi-
lity for a bond to form a loop in an s-node cluster is proportional to (s/N)? (i.e.,
proportional to the probability of choosing two sites in that cluster). Calculating
the fraction of loops Pjoep in the system yields:

-PloopO(ZNg <Zﬁzﬁa (3.5)

where the sum is over all clusters in the system and s; is the size of the ith cluster
[12]. Therefore, the fraction of loops in the system is less than or proportional
to S/N, where S is the size of the largest cluster. Below the critical threshold
there is no spanning cluster in the system and therefore the fraction of loops
is negligible. Hence, for values of k below k = 2, loops can be neglected. At
the threshold the structure of the spanning cluster is almost a tree. Above the
threshold loops can no longer be neglected, but since this only happens when
a spanning cluster exists the criterion in ([3.4) is valid as a criterion for finding
the critical point. A derivation of the exact conditions under which ([B.4) is valid
can be found in [10].

K
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The above reasoning can be applied to the problem of percolation on a ge-
neralized random network. If we randomly remove a fraction p of the sites (or
bonds), the degree distribution of the remaining sites will change. For instance,
sites with initial degree kg will have, after the random removal of nodes, a dif-
ferent number of connections, depending on the number of removed neighbors.
The new number of connections will be binomially distributed. If we begin with
a distribution of degrees Py(ko), the new degree distribution of the network will
be:

Z Py (ko) ( ) p)FphoF, (3.6)

Calculating the first moment for this distribution, given (ko) and (k2) for the
original distribution leads to:

k) =" P(k)k = (1 —p){ko). (3.7)
k=0
In the same manner we can calculate the second moment:
(k%) = > P(R)K? = (1= p)*(K3) + p(1 — p) (ko). (3.8)
k=0

Both those quantities can be substituted into (34) to find the criterion for
criticality. This yields:

() _ (1= pP0R) +p(1l—p){k) _,

K=~ = (3.9)
(k) (1 = p)(ko)
Reorganizing (B.3]), one gets the critical threshold for percolation [IT]:
l—pe— — (3.10)
Pec = o — 1 .

where rg = (kZ)/(ko) is calculated using the original distribution, before the
removal of sites.

Eqations (B:4)) and (BI0) are valid for a wide range of generalized random
graphs and distributions. For example for a Cayley tree — a graph with a fixed
degree z and no loops — the criterion from (BI0) can be used. This yields the
critical concentration g. = 1 —p, = 1/(z — 1), which is well known [T3]. Another
example is a random Erdos-Rényi (ER) graph. In those graphs edges are distri-
buted randomly and the resulting degree distribution is Poissonian [4]. Applying
the criterion from (3) to a Poisson distribution yields:

_ k) (k2R
R T =2, (3.11)
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which reduces to (k) =1 as known for ER graphs [4].

Our main concern in this chapter will be with the behavior of scale-free net-
works. Scale-Free networks are networks whose degree distribution (i.e. fraction
of sites with k connections) behaves as:

P(k) x k™, m <k <K, (3.12)

where ) is the exponent, m is the lower cutoff, and K is the upper cutoff. There
are no sites with degree below m and above K. For finite networks the upper
cutoff N arises naturally since the fraction of high-degree sites decays with k.
An estimate of this cutoff can be found by the assumption that the tail of the
distribution above K is of the order of one site [11]:

> P(k) ~ /: P(k)dk = % (3.13)
k=K

The estimate obtained this way gives:
K ~mNY(O=1, (3.14)

This estimate allows the derivation of finite size effects in the network and al-
lows calculations of moments of the distribution in ([B:12), that would otherwise
diverge. Newman et al [14] use an exponential cutoff rather than a sharp one,
but the effect on the results is minor.

The importance of scale-free networks lies in the fact that this distribution
occurs in many natural and man-made networks [5], 14} [I5]. An example of
a scale-free network is the physical Internet structure, that is the router to
router (and end-units) connectivity. This structure was studied by Faloutsos et
al [5]. They have found that the inter-router network is a non-directed scale-free
network with A = 2.5. The size of the Internet today is about 107 sites, making
it a fairly large network.

Further results about the structure of scale-free networks have also been
proven by Aiello et al [T6]. The size of the infinite cluster was calculated, and it
was found that for A < 2 the infinite cluster is of almost the size of the entire
graph (i.e. Pow = 1 — 0(1), where o(1) is a function of the network size, f(N),
such that f(N) — 0 when N — o0). For A > A\, = 3.478... there is no infinite
cluster at all (since we use a somewhat different distribution [I7], we get A. ~ 4).
For A < A. the second largest cluster is of order InN. For lower cutoff m > 2 a
spanning cluster exists for every \.

The average distance between sites is also different in scale free sites from
its value for normal random graphs. While for ER graphs the average distance
between sites behaves as d ~ In N [H], for scale free graphs with 2 < A < 3
the distance behaves as d ~ Inln N [18| [19], for A = 2, d ~ const, and for
A=3,d~InN/InlnN [20]. The reason for this short distance is the small
core, containing most high degree sites, which has a very small diameter. For
A > 3 the random graph behavior d ~ In NV is recovered. Those results were later
confirmed using different methods in [21] [22].
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3.1.2 Generating Functions

A general method for studying the size of the infinite cluster and the residual
network for a graph with an arbitrary degree distribution was first developed
by Molloy and Reed [23]. They suggested viewing the infinite cluster as being
explored and used differential equations for the number of un-exposed links and
unvisited sites to find the size of the infinite cluster and the degree distribution
of the residual graph (the finite clusters).

An alternative and very powerful derivation was given by Newman, Strogatz
and Watts [14]. They have used the generating functions method to study the
size of the infinite cluster as well as other quantities (such as the diameter and
cluster size distribution). They have also applied this method to other types of
graphs (directed and bipartite). Here we closely follow their derivation in order
to find the size of the infinite cluster and the critical exponents.

In 14} 24] a generating function is built for the degree distribution:

Go(z) = Z P(k)z". (3.15)
k=0

The probability of reaching a site with degree k by following a specific link is
kP(k)/(k) [10, 0T, 04, 24], and the corresponding generating function for those
probabilities is

Ik71
G(a) = % = L Gow)/ ) (3.16)

Assuming that Hj(x) is the generating function for the probability of reaching a
branch of a given size by following a link, the self-consistent equation for H; (z)
is:

Hi(z) =1—q+ qzGi(Hi(2)) . (3.17)

Since Go(z) is the generating function for the degree of a site, the generating
function for the probability of a site to belong to an n-site cluster is:

Ho(z) = 1= q+ quGo(Hy(2)) - (3.18)

Below the transition, Hy(1) = 1, since this is the probability to belong to a
cluster of any size. However, above the transition this probability is no longer
normalized since this does not include the infinite cluster. Then, the relative size
of the giant cluster is Py, = 1 — g+ qHy(1), since Hy contains only the finite-size
clusters. It follows that

Py = q<1 — ki:()P(k)M“) , (3.19)

where u = H;(1) is the smallest positive root (which can be found numerically)
of
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1 q = w1
u=1 q+<mg;M%m . (3.20)

This equation can be solved numerically and the solution can be substituted into
(BI9) to calculate the size of the infinite cluster in a graph with a given degree
distribution.

3.1.3 Critical Exponents

Using Abelian and Tauberian methods [25] [26] one can use . (319) and (3.20)
to find the critical exponents for percolation in scale free networks. Some preli-
minary results can be found in [27]. A more detailed treatment can be found in
[28, 1Y]. Here we just state the results.

The size of the giant component near the critical point behaves as Py, ~
(b — pe)?, where

= 2<A<3,
B=14015 3<A<4, (3.21)
1 A >4

The number of clusters with size s behaves as ng ~ (p — p.)~", where

1 2\-3

=2 - - -
TEE N T g

2< A< (3.22)
For A > 4, 7 = 2.5, which is the regular mean field value. From those results
it can be seen that the critical exponents are anomalous even when the second
moment (k?) is convergent and only the third moment (k3) diverges, as in the
case of 3 < A < 4.

From 7 it can be deduced that the “double jump” in Erdds-Rényi graphs is
also seen in scale free graphs, Where S, the size of largest component, scales
as S ~ NA=2/(A=1) exactly at criticality [19]. For A > 4 the known result of
S ~ N2/3 is obtained. The fractal dimensions at criticality for A > 3 can also be
obtained [19] and are:

A—2 2/\—2 d 2)\—1

W= Ty WERTy ATy

(3.23)

where for A\ > 4 the regular mean field values of 2,4, 6 are restored.

3.2 Directed Graphs

Many complex networks in nature have directed links, a property that affects the
network’s navigability and large-scale topology. Here we study the percolation
properties of such directed scale-free networks with correlated in and out degree
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distributions. We derive a phase diagram that indicates the existence of three
regimes, determined by the values of the degree exponents. In the first regime
we regain the known directed percolation mean field exponents. In contrast, the
second and third regimes are characterized by anomalous exponents, which we
calculate analytically. In the third regime the network is resilient to random
dilution, i.e., the percolation threshold is p. — 1.

Recently the topological properties of large complex networks such as the
Internet, WWW, electric power grid, cellular and social networks have drawn
considerable attention [29] [I5]. Some of these networks are directed, for ex-
ample, in social and economical networks [30] if node A gains information or
acquires physical goods from node B, it does not necessarily mean that node
B gets similar input from node A. Likewise, most metabolic reactions [31] are
one-directional, thus changes in the concentration of molecule A affect the con-
centration of its product B, but the reverse is not true. Despite the directedness
of many real networks, the modeling literature, with few notable exceptions
[14, B2], has focused mainly on undirected networks.

An important property of directed networks can be captured by studying
their degree distribution, P(j, k), or the probability that an arbitrary node has
j incoming and k outgoing edges. Many naturally occurring directed networks,
such as the WWW| metabolic networks, citation networks, etc., exhibit a power-
law, or scale-free degree distribution for the incoming or outgoing links:

Pin(out) (l) = Cli}\m(out)a l >m ) (324)

where m is the minimal connectivity (usually taken to be m = 1), ¢ is a
normalization factor and Aj,(ou) are the in(out) degree exponents characte-
rizing the network [6l [7]. An important property of scale-free networks is
their robustness to random failures, coupled with an increased vulnerability to
attacks [33] [IT], 24, 27, [34]. Recently it has been recognized that this feature
can be addressed analytically in quantitative terms [I1}, 24, [27] by combining
graph theoretical concepts with ideas from percolation theory. Yet, while the
percolation properties of undirected networks are much studied, little is known
about the effect of node failure in directed networks. As many important net-
works are directed, it is important to fully understand the implications to their
stability. Here we review and extend the results [35] showing that directedness
has a strong impact on the percolation properties of complex networks and we
draw a detailed phase diagram.

3.2.1 Structure

The structure of a directed graph has been characterized in [14] 32], and in the
context of the WWW in [7]. In general, a directed graph consists of a giant
weakly connected component (GWCC) and several finite components. In the
GWCC every site is reachable from every other, provided that the links are
treated as bi-directional. The GWCC is further divided into a giant strongly
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Finite comonents  Tendrils

=30 AN

Fig. 3.1. Structure of a general directed graph
connected component (GSCC), consisting of all sites reachable from each other
following directed links. All the sites reachable from the GSCC are referred to
as the giant OUT component, and the sites from which the GSCC is reachable
are referred to as the giant IN component. The GSCC is the intersection of the

IN and OUT components. All sites in the GWCC, but not in the IN and OUT
components are referred to as the “tendrils” (see Fig. B1)).

3.2.2 Percolation Threshold

For a directed random network of arbitrary degree distribution the condition
for the existence of a giant component can be deduced in a manner similar to
[L1]. If a site is reached following a link pointing to it, then it must have at least
one outgoing link, on average, in order to be part of a giant component. This
condition can be written as

(kjli = 5y = > k;P(ki, kjli <> j) = 1. (3.25)
k)i,kj
Using Bayes rule we get

. . _P(k“kj,lﬁj) . P(’L—)j|kl,k‘j)P(kl,kJ)
P(ki kjli — j) = Piog) Pl J) . (3.26)

For random networks P(i — j) = (k) /(N —1) and P(i — jlk;, k;) = k;/(N —1),
where N is the total number of nodes in the network. The above criterion thus
reduces to [14, [32)

(Jk) > (k). (3.27)



3 Directed and Non-directed Scale-Free Networks 31

Suppose a fraction p of the nodes is removed from the network. (Alternatively,
a fraction ¢ = 1 — p of the nodes is retained.) The original degree distribution,
P(j4, k), becomes

PR = 3 Pl (1) @i () a-pit . as)

Jo,ko

In view of this new distribution, (3221) yields the percolation threshold

1y = SR
Ge=1-pc G (3.29)

where averages are computed with respect to the original distribution before
dilution, P(j, k). Equation (B:29) indicates that in directed scale-free networks
if (jk) diverges then g. — 0 and the network is resilient to random breakdown
of nodes and bonds.

The term (jk) may be dramatically influenced by the appearance of correla-
tions between the in- and out-degrees of the nodes. In particular, let us consider
scale-free distributions for both the in- and out-degrees:

- Beinj i j#0,
Pin () ~ T (3.30)
1-B Jj=0,
and
Pout(k) = Coutk_)\om . (331)

In (330) we choose to add the possible zero value to the in-degree in order
to maintain (j) = (k). If the in- and out-degrees are uncorrelated, we expect
(jk) = () (k). For several real directed networks this equality does not hold. For
example, the network of Notre-Dame University WWW [6], has (k) = (j) ~ 4.6,
and thus (j)(k) = 21.16. In contrast, measuring directly we find (jk) ~ 200,
about an order of magnitude larger than the result expected for the uncorrelated
case. This yields an estimate of g. =~ 0.02, i.e., a very stable directed network.
Similar results are also obtained for metabolic networks studied in [3T], indicating
that in many real directed networks, the in- and out-degrees are correlated.

To address correlations, we model it in the following manner: we first generate
the j values for the entire network. Next, for each site with j # 0 with probability
A we generate k fully correlated with 7, i.e., k = k(j). Assuming that k() is a mo-
notonically increasing function then the requirement couik ™ot dk = c;nj " dj
— needed to maintain the distributions scale-free — leads to krout=1 = jrin—1,
With probability 1 — A, the degree k is chosen independently from j:

(1 - A)Bcinji)\mcoutki)\nm + BACoutkiAout 5,5 (k) J 7£ 0,

P(j, k) ~ 3.32
(J ) {(1 - B)CoutkiAout j=0, ( )
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6

5- Mean field .
I exponents

out

Fig. 3.2. Phase diagram of the different regimes for the IN component of scale-free
correlated directed networks. The boundary between Resilient and Anomalous expo-
nents is derived from (3.33) while that between Anomalous exponents and Mean field
exponents is given by (B48) for A* = 4. For the diagram of the OUT component A;,
and Aoyt change roles. After [35]

where j(k) = k T With this distribution, any finite fraction BA of fully
correlated sites yields a diverging (jk) whenever

Aout—1
Xin —

()\out - 2)()\zn - 2) S ]- 9 (333)

causing the percolation threshold to vanish (see Fig. B.2)). The influence of even
very small correlation on the threshold, and the sharpness of the transition to
the resilient regime can be seen in Fig. B3]

In the case of no correlations between the in- and the out-degrees, A = 0,
(B32) becomes P(j, k) = Pin(j)Pout(k). Then the condition for the existence of
a giant component is: (k) = (j) = 1. Moreover, (B:29)) reduces to:

1
QCzl_pc:W' (334)
Applying (B34) to scale-free networks one concludes that for A, > 2 and
Ain > 2 a phase transition exists at a finite ¢.. Here we concern ourselves with the
critical exponents associated with the percolation transition in both correlated
and uncorrelated scale-free network of A\,,; > 2 and \;, > 2, which is the most
relevant regime (Fig. B.2).
Percolation of the GWCC can be seen to be similar to percolation in the non-
directed graph created from the directed graph by ignoring the directionality of
the links. The threshold is obtained from the criterion [11]
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Fig. 3.3. The critical concentration as a function of A\;, and A,y:. Notice the steep

change at the boundaries of the transition between the resilient and non resilient regi-
mes. This plot was obtained for A = 0.05

_ (K
“= Gk T (3.35)

Here the connectivity distribution is the convolution of the in and out distribu-
tions

k

P'(k) =Y P(,k—1). (3.36)

=0

Regardless of correlations, P’(k) is always dominated by the slower decay-
exponent, therefore percolation of the GWCC is the same as in non-directed
scale-free networks, with Acsr = min(Asp, Aout)- Note that the percolation thres-

hold of the GWCC may differ from that of the GSCC and the IN and OUT
components [32].

3.2.3 Critical Exponents

We now use the formalism of generating functions [26] to analyze percolation of
the GSCC and IN and OUT components [35]. In [I4], [32] a generating function
is built for the joint probability distribution of outgoing and incoming degrees,
before dilution:

&(x,y) = ZP(]’, E)aiy . (3.37)
k,j
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Using the approach of Callaway et al [24], let ¢(j, k) be the probability that a
vertex of degree (4, k) remains in the network following dilution. The generating
function after dilution is then

ZP 3, k)q(j, k)xIy" (3.38)

From (3:3]) it is possible to define the generating function for the outgoing
degrees Gy

Go(y) =G(Ly) = Z P(j,k)a(j, k)y" . (3.39)

The probability of reaching a site by following a specific link is proportional to
JP(4, k), therefore, the probability to reach an occupied site following a specific
directed link is generated by

Zj,k jP(]v k)
Let Hy(y) be the generating function for the probability of reaching an ou-

tgoing component of a given size by following a directed link, after a dilution.
H, (y) satisfies the self-consistent equation:

Gi(y) = (3.40)

Hi(y) =1 - Gi(1) +yGi(Hi(y)) - (3.41)

Since Go(y) is the generating function for the outgoing degree of a site, the
generating function for the probability that n sites are reachable from a given
site is

Ho(y) =1 — Go(1) + yGo(H1(y)) - (3.42)

For the case where correlations exist, and assuming random dilution: ¢(j, k) = g,

(B4D) and ([B42) reduce to

Hi(y) =1—q+ 203 (BAj(K) + (1 = A)() Pout () Ha ()", (3.43)

and

Ho(y) =1—q+qy Y Pour(k)Hi(y)" . (3.44)
k

If A — 0, one expects that Hyo(y) = Hi(y), since there is no correlation between
j and k, thus the probability to have k outgoing edges is P,,+(k) whether we
choose the site randomly or weighted by the incoming edges j.

Hy(1) is the probability to reach an outgoing component of any finite size
choosing a site. Thus, below the percolation transition Hy(1) = 1, while above
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the transition there is a finite probability to follow a directed link to a site which
is a root of an infinite outgoing component: Py, = 1 — Hy(1). It follows that

o0

Poo(q) = q(1 =) Pour(k)u") (3.45)
k

where v = Hq(1) is the smallest positive root of

u=1-q+ % S (BAG(k) + (1 — A)(5)) Pous (k)u" . (3.46)
k

Here P (q) is the fraction of sites from which an infinite number of sites is
reachable. Equation (BZf) can be solved numerically and the solution may be
substituted into (B.44), yielding the size of the IN component at dilution p = 1—g.

Giant Component Size

Near criticality, the probability to start from a site and reach a giant outgoing
component follows P, ~ (¢ — q.)?. For mean-field systems (such as infinite-
dimensional systems, random graphs and Cayley trees) it is known that 8 =
1 [36]. This regular mean-field result is not always valid. Instead, we study [35]
the behavior of ([B46) near ¢ = g., u = 1, and find

1
e 2<)\*<37

B=14 5 3<XI <4, (3.47)
1 A >4,
where
Ain - /\out
A= Aou _ 3.48
i + Aln -1 ( )

We see that the order parameter exponent (3 attains its usual mean-field value
only for A* > 4. As Aoyt — \in the correlated fraction BA of sites resembles
non-directed networks [28, B7] (where there is no distinction between incoming
and outgoing degrees). In this case we get \* = A,y = A\i, for any amount
of correlation A. The criterion for the existence of a giant component is then
(k?)/(k) = 1, and not 2 as in the non-directed case. The difference stems from
the fact that in the non-directed case one of the links is used to reach the site,
while in the directed case there is generally no correlation between the location of
the incoming and outgoing links. Therefore, one more outgoing link is available
for leaving the site.

Without any correlations, A = 0, different terms prevail in the analysis and

gl xmr 2< o <3, (3.49)
)1 Nout > 3. '
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This is the same as ([8.47) but with \* = X\, + 1.

The GSCC is the intersection of the IN and OUT components. Therefore, it
behaves as the smaller of the two components: Sgscc = max(Bin, Bout)- This can
be also derived by applying the same methods as for the IN and OUT components
to the generating function of the GSCC obtained in [32]. The exponent for
the GWCC, on the other hand, is independent of the exponents of the other
components, since the transition point is different.

Finite Component Sizes

It is known that for a random graph of arbitrary degree distribution the finite
clusters follow the scaling form

n(s) ~ s Te 5 (3.50)

where s is the cluster size and n(s) is the number of clusters of size s. At criticality
§* ~ |qg — qc| 77 diverges and the tail of the distribution follows a power law.

The probability that s sites can be reached from a site by following links at
criticality follows p(s) ~ 577, and is generated by Hy, where Ho(y) = >, p(s)y®.
Asin [28], Hyo(y) can be expanded from (B42)). In the presence of correlations
we find [35]

(3.51)

3 A* > 4.

1+ = 2< )\ <4,
T:{M_Q
2

The regular mean-field exponents are recovered for A* > 4. For the uncorrelated
case we get [35]

1+l 2< A <3
r={ TRt S A <5 (3.52)
5 Aout > 3.

Now the regular mean-field results are obtained for A > 3.

3.2.4 Summary

In summary, we calculate the percolation properties of directed scale-free net-
works. We find that the percolation critical exponents in scale-free networks are
strongly dependent upon the existence of correlations and upon the degree dis-
tribution exponents in the range of 2 < \* < 4. This regime characterizes most
naturally occurring networks, such as metabolic networks or the WWW. The re-
gular mean-field behavior of percolation in infinite dimensions is recovered only
for \* > 4.

A connection is found between non-directed and directed scale-free percola-
tion exponents for any finite correlation between the in- and out-degrees. The
correlation between the in- and out-degrees is responsible for the change in the
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Table 3.1. Values of \* for the different network components for both correlated and
uncorrelated cases

uncorrelated correlated
GWCC | min(Aout, Ain) + 1 | min(Aout, Ain)
IN Aout + 1 Aout + Hip=2out
ouT Ain +1 Ain + 2gut=2in
out
GSCC | min(Aout; Ain) + 1 | min(Xjue, Ain)

critical exponents, and the question whether both incoming and outgoing links
lead to the same sites (as in non-directed networks) has no influence on the ex-
ponents. In the uncorrelated case, i.e. P(j, k) = P;,(j) Pout(k), the probability to
reach an outgoing component does not bear any dependence upon P;,(j). The
results are summarized in Table B

3.3 Spatially Embedded Scale-Free Graphs

The networks studied so far were examples of infinite dimensional networks.
They are referred to as infinite dimensional objects since there is no notion of
vicinity — every site can connect to every other site with some probability — and
since the number of sites in a chemical distance (minimal path length) ! from
a given site grows exponentially (or faster [18]), which is faster than any power
law N (1) ~ 14, expected for a d-dimensional lattice.

Here we describe a method for embedding scale-free networks, with degree
distribution P(k) ~ k=, in regular Euclidean lattices accounting for geographi-
cal properties [38]. The embedding is driven by a natural constraint of minimiza-
tion of the total length of the links in the system. All networks with A > 2 can
be successfully embedded up to an (Euclidean) distance £ which can be made
as large as desired upon the changing of an external parameter. However, the
natural cutoff of the distribution can only be achieved for A > 3. Clusters of suc-
cessive layers are found to be compact (the fractal dimension is dy = d), while
the dimension of the shortest path between any two sites is smaller than one:

Amin = ﬁ, contrary to all other known examples of fractals and disordered

lattices. An alternative method was suggested by Warren et al [39].

All of the networks discussed in previous sections were off-lattice, i.e. the
Euclidean distance between nodes was irrelevant. However, real-life networks are
often embedded in Euclidean geographical space (e.g., the Internet is embedded
in the two-dimensional network of routers, neuronal networks are embedded in
a three-dimensional brain, etc.). Indeed, in the case of the Internet, indications
for the relevance of embedding space is given in [40)].

Here we review and extend a method for generating scale-free networks on
Euclidean lattices, accounting for geographical properties, and describe some of
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its properties [38]. As a guiding principle we impose the natural restriction that
the total length of links in the system be minimal.

3.3.1 Model Definition

Our model is defined as follows. To each site of a d-dimensional lattice, of size
R, and with periodic boundary conditions, we assign a random connectivity k
taken from the scale-free distribution

P(k) = Ck™*, m<k<K, (3.53)

where the normalization constant C' ~ (A — 1)m*~! (for K large) [41]. We then
select a site at random and connect it to its closest neighbors until its (previously
assigned) connectivity k is realized, or until all sites up to a distance

r(k) = AkY/? (3.54)

have been explored. (Links to some of the neighboring sites might prove im-
possible, in case that the connectivity quota of the target site is already filled.)
This process is repeated for all sites of the lattice. We show that following this
method networks with A > 2 can be successfully embedded up to an (Euclidean)
distance £ which can be made as large as desired upon the changing of the
external parameter A.

Suppose that one attempts to embed a scale-free network, by the above re-
cipe, in an infinite lattice, R — oo. Sites with a connectivity larger than a
certain cutoff k.(A) cannot be realized, because of saturation of the surrounding
sites. Consider the number of links n(r) entering a generic site from a surroun-
ding neighborhood of radius r. Sites at distance 7’ are linked to the origin with
probability P(k' > (r'/A)%):

, '\ _a 1 r < A.
P (k > (A> ) e / k> dk ~ {(Z)d(l_” Lo (3.55)
%)

Hence

o N 4 _ d(A—1)
A—1 A
- 1p1d=1p [ s ™ - 44 _ d(2-) '
n(r) /drr (k >(A a0 —2) d(/\_2)r (3.56)
0

The cutoff connectivity is then

1
c = 1. ~ 7Ad .
ko= i n() ~ 375 (357

The cutoff connectivity implies a cutoff length

€ =r(ke) ~ (A —2)" 1142, (3.58)
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The embedded network is scale-free up to distances r < £, and repeats itself
(statistically) for r > £, similar to the infinite percolation cluster above critica-
lity: The infinite cluster in percolation is fractal up to the coherence length &
and repeats thereafter [13], 42, [43].

When the lattice is finite, R < oo, the number of sites is finite, N ~ R?,
which imposes a maximum connectivity [11], 44]

K ~mNYO=D o RH/O=1), (3.59)
This implies a finite-size cutoff length
Fmaz = r(K) ~ ARV, (3.60)

The interplay between the three length scales, R, &, 7,42, determines the nature
of the network. If the lattice is finite, then the maximal connectivity is ke = K
only if 740 < & Otherwise (14, > &) the lattice repeats itself at length scales
larger than £. As long as min(r,qz, &) < R, the finite size of the lattice imposes
no serious restrictions. Otherwise ( min(r.,q4,&) > R) finite-size effects become
important. We emphasize that in all cases the degree distribution (up to the
cutoff) is scale-free.

To study the possibility of embedding the network in the lattice we can use
(BED) in conjunction with (B54). This yields:

Tmazx = T(kc) = ()\ - 2)1/(1]53/(1 . (361)

Since we forbid sites to connect further than the lattice size we must demand
Fmax < B = NY ¢ which means that networks can be embedded in a lattice in
the suggested manner only if k. < N'/2. This limitation imposes an unnatural
cutoff whenever X\ < 3, when compared to (3I4).

In Fig. B4l we show typical networks that result from our embedding me-
thod, for A = 2.5 and 5 in two-dimensional lattices (we limit our numerical
results to d = 2). The larger A is the more closely the network resembles the
embedding lattice, because longer links are rare [45]. In Fig. B4b we show the
same networks as in part (a) where successive chemical shells are depicted in dif-
ferent colors. Chemical shell | consists of all sites at minimal distance (minimal
number of connecting links) ! from a given site. For our choice of parameters,
A = 5 happens to fall in the region of £ > ry,4,, while for A = 2.5, £ < rpe. In
the latter case we clearly see (Fig. B4b, A = 2.5) the (statistical) repetition of
the network beyond the length scale . The different regimes are summarized in
Fig.

We now address the geometrical properties of the networks, arising from their
embedding in Euclidean space. To this aim, it is useful to consider the spatial
arrangement of the networks as measured both in an Euclidean metric and in
chemical space. The chemical distance [ between any two sites is the length of
the minimal path between them (minimal number of links). Thus if the distance
between the two sites is 7, then [ ~ r%min defines the minimal length exponent
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Fig. 3.4. Spatial structure of connectivity network. Top: shown is the typical map of
links for a system of 50 x 50 sites generated from a degree distributions with A = 2.5
and A = 5. Bottom: shown (in different colors) are shells of equidistant sites to the
central one in a lattice of 300 x 300 sites. Note that for A = 5, shells are concentric and
continuous fractals; but for A = 2.5, shells are broken

dpmin. We will see that dy,, < 1 (for d > 1), contrary to all naturally occurring
fractals and disordered media. Sites at chemical distance [ from a given site
constitute its [-th chemical shell. The number of (connected) sites within radius
r scales as m(r) ~ ré/ defining the fractal dimension d ¢. Likewise, the number
of (connected) sites within chemical radius I scales as m(l) ~ [%, which defines
the fractal dimension d; in chemical space. The two fractal dimension are related:
din = dy/dy [T3, 42, 43).

To study dy, we compute the perimeter S(r), the number of sites that connect
the interior cluster of a region of radius r to sites outside. The fractal dimension
then follows from the scaling relation S(r) ~ 7%~ We focus on the regime
€ > Tae. Consider a shell dr’, of radius r’. A site of connectivity & within the
shell is connected to the outside (to a distance larger than r—r’) with probability

P(K > (“52)%), (355). Thus,

r o d d .
Stry= [ a4 P (K > (T ! ) ~ {7” r<d (562)
0
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InA/InR

Fig. 3.5. This diagram shows the six regions where different behavior of the network
is found: for region A: rpmaz < R < & B: Thmae < € < R, C: £ < Thmaz < R, D:
£ < R < Tmaz, B: R <& < Tmaz, F: R < rmax < & The diagram can be mapped into
only four regions where the cutoff k. and where size effect K are expected. A and B:
no cutoff and no size effect; C and D: cutoff and no size effect; E: cutoff and size effect;
F: no cutoff but size effect. The two symbols indicate the parameters corresponding to
Fig. B4b, (full diamond) XA = 2.5 and (full circle) A =5

where ¢(A) ~ 14+1/[d(A—1)+1]. In other words, the network is compact, d; = d
at large distances r > A, and super-compact, dy = d+ 1, at r < A.

In order to compute d,,;, (or d;), we regard the chemical shells as being
roughly smooth, at least in the regime & > 7,44, as suggested by Fig. B4b
(A =5). Let the width of shell [ be Ar(l), then

z—/dz /AT pimin, (3.63)

since Al = 1. The number of sites in shell I, N(I), is, on the one hand, N(I) ~
r(1)¥~YAr(l). On the other hand, since the maximal connectivity in shell [ is
K(I) ~ N()Y/®=1 the thickness of shell (I+1) is Ar(I+1) which is determined
by the length of the largest link to the next shell i.e., r[K(1)], and thus, Ar(l 4+
1) ~ r[K(1)] ~ AK()*/?. Assuming (for large 1) that Ar(l + 1) ~ Ar(l), we
obtain

Ar(l) ~ rao DT (3.64)
Using this expression in ([B.63)), yields

A—2

Thus, above d = 1, the dimensions d,;, and d; = df/dp, are anomalous for all
values of A.

In Fig. we plot d,.i;, as measured from simulations, and compared
with the analytical result (3.65). The scaling suggested in Fig. [3.6b, N(I) ~
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~ 10
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10° 10° 10"

1% /R

Fig. 3.6. a The minimal length exponent d,..n, as a function of A\. Note the good
agreement between theoretical estimations (continuous line) and simulations results
(full squares). b The shape of the ®(I%/R?) scaling function is shown for A = 4 and
several lattice sizes: R=1000 (circle), 2000 (square), 2500 (diamond) and 3000 (triangle)

[4=1p(1% /RY), is valid only for € > 7pae. For R — oo, we expect that the
network is scale-free up to length scale ¢ and the analogous scaling will be
N(l) ~ 1= (1% /¢0), where W (2 > 1) ~ gld=d)/d,

Note on the Upper Cutoff

In (BI4) we suggest that the upper cutoff of a scale free network scales as
NYA=1 However, for the spatially embedded graphs we find that no graph
with A < 3 can be embedded in a lattice without sacrificing the natural cutoff
(see discussion after (BB1))). That is, the cutoff is limited to v/N. This holds
true for every d. Similar results are indeed obtained for mean field (i.e. non-
embedded) graphs [46], while Warren et al [39] find the natural cutoff even for
graphs embedded in d = 2 lattices.

A possible explanation is in the different method for the network implemen-
tation, which leads to different ensembles. For the non-embedded networks we
allowed every link to lead to every other with an equal probability, thus allo-
wing more than one edge between a pair of sites, and edges leading from a site
to itself which were just ignored. In contrast, in the spatially embedded case
no such connections were allowed. It is plausible that allowing such connections
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A 2.0 A 2.5

A =50 A = 50

Fig. 3.7. The infinite cluster in scale free networks at criticality. The clusters were
generated using a Leath type method, where the nearest available nodes are selected
in each shell

or, alternatively, allowing a deviation from the degree distribution, leads to the
“natural” cutoff, while requiring the exact degree sequence in conjunction with
no such connections influences the ensemble, bringing to an upper cutoff of v N,
due to the high probability of forming such connections when the cutoff is higher.
The limit of K ~ /N seems to stem from the fact that the expected number
of edges between two such sites (or self-loops of a single such site) is of order
K?/{k)N > 1, which implies that most networks having such high degree sites
will be multigraphs, and therefore this might limit the cutoff. On the other hand,
since degree 1 sites consist of a finite fraction of the links in the network, a finite
fraction of the links of high degree sites will link to them, implying that the tail
of the distribution, and therefore the scaling of the cutoff is not changed, even
when double edges and self loops are removed.

3.3.2 Summary

In summary, we propose a method for embedding scale-free networks in Euc-
lidean lattices. The method is based on a natural principle of minimizing the
total length of links in the system. This principle enables us to embed the scale-
free networks in Euclidean space without additional external exponents. Very
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recently, independently, Manna and Sen [47] and Xulvi-Brunet and Sokolov [4§]
suggested a different embedding method in Euclidean space which include an
external exponent. We have shown that while the fractal dimension d; of the
network is the same as the Euclidean dimension, the chemical dimension d; > dy
for all values of A, yielding d,;,, < 1 for all A and d > 1. A related work by War-
ren, Sander and Sokolov [39], studies some percolation properties of a similar
geographical model. In Fig. B.7 we show some snapshots of the infinite cluster
at the percolation threshold, for 2d scale free systems with various values of .
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Abstract. Many real networks in nature and society share two generic properties:
they are scale-free and they display a high degree of clustering. We show that the scale-
free nature and high clustering of real networks are the consequence of a hierarchical
organization, implying that small groups of nodes form increasingly large groups in a
hierarchical manner, while maintaining a scale-free topology. In hierarchical networks
the clustering coefficient follows a strict scaling law, which can be used to identify
the presence of a hierarchical organization in real networks. We find that several real
networks, such as the World Wide Web, actor network, the Internet at the domain level
and the semantic web obey this scaling law, indicating that hierarchy is a fundamental
characteristic of many complex systems. We the focus on the metabolic network of
43 distinct organisms and show that many small, highly connected topologic modules
combine in a hierarchical manner into larger, less cohesive units, their number and
degree of clustering following a power law. Within Escherichia Coli we find that the
uncovered hierarchical modularity closely overlaps with known metabolic functions.

4.1 Introduction

The availability of detailed network maps, capturing the topology of such diverse
systems as the cell [1} 2] B, [4], the world wide web [5], or the sexual network [6],
have offered scientists for the first time the chance to address in quantitative
terms the generic features of real networks (for reviews see [7, 8]). As a result,
we learned that networks are governed by strict organizing principles, that gene-
rate systematic and measurable deviations from the topology predicted by the
random graph theory of Erdés and Rényi [9] [T0], the model used to describe
complex webs in the past four decades.

Two properties of real networks have generated considerable attention. First,
many networks display a high degree of clustering, measured by the clustering
coefficient, which for node ¢ with k; links has the value C; = 2n;/k;(k; —1), where
n; is the number of links between the k; neighbors of 7. Empirical results indicate
that C; averaged over all nodes is significantly higher for many real networks
than for a random network of similar size [11}[7, [§]. Furthermore, the clustering
coefficient of real networks is to a high degree independent of the number of
nodes in the network (see Fig. 9 in [7]). At the same time, many networks of
scientific or technological interest, ranging from the World Wide Web [5] to
biological networks [1] [2, B [4] have been found to be scale-free [12] [13], which

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 46-65, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Fig. 4.1. a A schematic illustration of a scale-free network, whose degree distribution
follows a power law. In such a network a few highly connected nodes, or hubs (empty
circles) play an important role in keeping the whole network together. b Schematic
illustration of a manifestly modular network made of four highly interlinked modules
connected to each other by a few links. This intuitive topology does not have a scale-
free degree distribution, as most of its nodes have a similar number of links, and hubs
are absent (After [17])

means that the probability that a node has k links (i.e. degree k) follows
P(k) ~ k™7,

where + is the degree exponent.

The scale-free property and clustering are not exclusive: for a large num-
ber of real networks, including metabolic networks [1} [2], the protein interaction
network [3, 4], the world wide web [5] and some social networks [14] 5] T6] the
scale-free topology and high clustering coexist. Yet, most models proposed to de-
scribe the topology of complex networks have difficulty capturing simultaneously
these two features. For example, the random network model [9, [T0] cannot ac-
count neither for the scale-free, nor for the clustered nature of real networks, as
it predicts an exponential degree distribution, and the average clustering coeffi-
cient, C(N), decreases as N ! with the number of nodes in the network. Scale-
free networks (Fig. ETh), capturing the power law degree distribution, predict
a much larger clustering coefficient than a random network. Indeed, numerical
simulations indicate that for one of the simplest models [I2, [T3] the average
clustering coefficient depends on the system size as C(N) ~ N~ [71[§], sig-
nificantly larger for large N than the random network prediction C(N) ~ N~1.
Yet, this prediction still disagrees with the finding that for several real systems
C' is independent of N [7].

On the biological front, it is now widely recognized that the thousands of
components of a living cell are dynamically interconnected, so that the cell’s
functional properties are ultimately encoded into a complex intracellular web of
molecular interactions [18] [19, 20, 21] 22| 23]. On the other hand, the identifi-
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cation and characterization of system-level features of biological organization is
a key issue of post-genomic biology [24] [18| [19]. The concept of modularity as-
sumes that cellular functionality can be seamlessly partitioned into a collection
of modules. Each module is a discrete entity of several elementary components
and performs an identifiable task, separable from the functions of other modu-
les [24] 20| 211 22}, [25], [23]. Spatially and chemically isolated molecular machines
or protein complexes (such as ribosomes and flagella) are prominent examples
of such functional units, but more extended modules, such as those achieving
their isolation through the initial binding of a signaling molecule [26] are also
apparent.

The dilemma of modular versus highly integrated topology is perhaps most
evident when inspecting cellular metabolism, a fully connected biochemical net-
work in which hundreds of metabolic substrates are densely integrated via bio-
chemical reactions. Within this network, however, modular organization (i.e.,
clear boundaries between sub-networks) is not immediately apparent.

A number of approaches for analyzing the functional capabilities of metabolic
networks clearly indicate the existence of separable functional elements [27], 2§].
Also, from a purely topologic perspective the metabolic network of Escherichia
coli is known to possess a high clustering coefficient [2], a property that is sugge-
stive of a modular organization. In itself, this implies that the metabolism of F.
coli has a modular topology, potentially comprising several densely interconnec-
ted functional modules of varying sizes that are connected by few inter-module
links (Fig. BIb). However, such clearcut modularity imposes severe restrictions
on the degree distribution, implying that most nodes have approximately the
same number of links, which contrasts with the metabolic network’s scale-free
nature [1], 2]. To determine if such a dichotomy is indeed a generic property of
all metabolic networks we first calculated the average clustering coefficient for
43 different organisms [29] as a function of the number of distinct substrates,
N, present in their metabolism. We find that for all 43 organisms the cluste-
ring coefficient is about an order of magnitude larger than that expected for a
scale-free network of similar size (Fig. [£2)), suggesting that metabolic networks
in all organisms are characterized by a high intrinsic potential modularity. We
also observe that in contrast with the prediction of the scale-free model, for
which the clustering coefficient decreases as N~ [7], the clustering coefficient
of metabolic networks’ is independent of their size (Fig. E2]).

Here we show that the fundamental discrepancy between models and empi-
rical measurements is rooted in a previously disregarded, yet generic feature of
many real networks, biological and non-biological: their hierarchical topology.
Indeed, in many networks one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no links to nodes outside
of the group to which they belong to. In society such modules represent groups
of friends or coworkers [30]; in the WWW denote communities with shared in-
terests [31),[32]; in the actor network they characterize specific genres or simply
individual movies. Some groups are small and tightly linked, others are larger
and somewhat less interconnected. This clearly identifiable modular organiza-
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Fig. 4.2. The average clustering coefficient, C(N), for 43 organisms [I] is shown as
a function of the number of substrates N present in each of them. Species belonging
to Archae (white star), Bacteria (black circle), and Eukaryotes (white triangle) are
shown. The dashed line indicates the dependence of the clustering coefficient on the
network size for a module-free scale-free network, while the diamonds denote C for a
scale-free network with the same parameters (N and number of links) as observed in
the 43 organisms (After [17])

tion is at the origin of the high clustering coefficient seen in many real networks.
Yet, models reproducing the scale-free property of real networks [7) 8] distin-
guish nodes based only on their degree, and are blind to node characteristics
that could lead to a modular topology.

In order to bring modularity, the high degree of clustering and the scale-free
topology under a single roof, we need to assume that modules combine into each
other in a hierarchical manner, generating what we call a hierarchical network.
The presence of a hierarchy and the scale-free property impose strict restrictions
on the number and the degree of cohesiveness of the different groups present
in a network, which can be captured in a quantitative manner using a scaling
law, describing the dependence of the clustering coefficient on the node degree.
We use this scaling law to identify the presence of a hierarchical architecture
in several real networks, and the absence of such hierarchy in geographically
organized webs.

4.2 Hierarchical Network Model

We start by constructing a hierarchical network model, that combines the scale-
free property with a high degree of clustering. Our starting point is a small
cluster of five densely linked nodes (Fig. [4.3h). Next we generate four replicas of
this hypothetical module and connect the four external nodes of the replicated
clusters to the central node of the old cluster, obtaining a large 25-node module
(Fig. E=3b). Subsequently, we again generate four replicas of this 25-node mo-
dule, and connect the 16 peripheral nodes to the central node of the old module
(Fig. E:3c), obtaining a new module of 125 nodes. These replication and connec-
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b n=1, N=25

c n=2, N=125

Fig. 4.3. The iterative construction leading to a hierarchical network. Starting from
a fully connected cluster of five nodes shown in a (note that the diagonal nodes are
also connected — links not visible), we create four identical replicas, connecting the
peripheral nodes of each cluster to the central node of the original cluster, obtaining a
network of N = 25 nodes b. In the next step we create four replicas of the obtained
cluster, and connect the peripheral nodes again, as shown in ¢, to the central node of
the original module, obtaining a N = 125 node network. This process can be continued
indefinitely (After [33])

tion steps can be repeated indefinitely, in each step increasing the number of
nodes in the system by a factor five.

Precursors to the model described in Fig. L3 have been proposed in [34] and
extended and discussed in [35, B6] as a method of generating deterministic scale-
free networks. Yet, it was believed that aside from their deterministic structure,
their statistical properties are equivalent with the stochastic models that are
often used to generate scale-free networks. In the following we argue that such
hierarchical construction generates an architecture that is significantly different
from the networks generated by traditional scale-free models. Most important,
we show that the new feature of the model, its hierarchical character, are shared
by a significant number of real networks.

First we note that the hierarchical network model seamlessly integrates a
scale-free topology with an inherent modular structure. Indeed, the generated
network has a power law degree distribution with degree exponent v = 1 +
In5/In4 = 2.161 (Fig. E4h). Furthermore, numerical simulations indicate that
the clustering coefficient, C' ~ 0.743, is independent of the size of the network
(Fig. E4k). Therefore, the high degree of clustering and the scale-free property
are simultaneously present in this network.
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Fig. 4.4. Scaling properties of the hierarchical model shown in Fig.E3](N = 57). a The
numerically determined degree distribution. The assymptotic scaling, with slope v =
1+1In5/1n4, is shown as a dashed line. b The C(k) curve for the model, demonstrating
that it follows (). The open circles show C(k) for a scale-free model [12] of the same
size, illustrating that it does not have a hierarchical architecture. ¢ The dependence of
the clustering coefficient, C, on the size of the network N. While for the hierarchical
model C is independent of N (¢), for the scale-free model C(N) decreases rapidly (o)

The most important feature of the network model of Fig. 3] not shared by
either the scale-free [12] [13] or random network models [9} [T0], is its hierarchical
architecture. The network is made of numerous small, highly integrated five
node modules (Fig. E3h), which are assembled into larger 25-node modules
(Fig. E3b). These 25-node modules are less integrated but each of them is
clearly separated from the other 25-node modules when we combine them into
the even larger 125-node modules (Fig. E3c). These 125-node modules are even
less cohesive, but again will appear separable from their replicas if the network
expands further.

This intrinsic hierarchy can be characterized in a quantitative manner using
the recent finding of Dorogovtsev, Goltsev and Mendes [35] that in deterministic
scale-free networks the clustering coefficient of a node with k& links follows the
scaling law

Clk) ~ k™. (4.1)

We argue that this scaling law quantifies the coexistence of a hierarchy of
nodes with different degrees of clustering, and applies to the model of Fig.[X3a—c
as well. Indeed, the nodes at the center of the numerous 5—node modules have
a clustering coefficient C' = 1. Those at the center of a 25-node module have
k =20 and C = 3/19, while those at the center of the 125-node modules have
k = 84 and C = 3/83, indicating that the higher a node’s degree the smaller
is its clustering coefficient, asymptotically following the 1/k law (Fig. [£.4b). In
contrast, for the scale-free model proposed in [12] the clustering coefficient is
independent of k, i.e. the scaling law (£1)) does not apply (Fig. E4b). The same
is true for the random [9, [10] or the various small world models [11] 7], for
which the clustering coefficient is independent of the nodes’ degree.
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Therefore, the discrete model of Fig. B.3 combines within a single framework
the two key properties of real networks: their scale-free topology and high mo-
dularity, which results in a system-size independent clustering coefficient. Yet,
the hierarchical modularity of the model results in the scaling law (1), which is
not shared by the traditional network models. The question is, could hierarchical
modularity, as captured by this model, characterize real networks as well?

4.3 Hierarchical Organization in Non-biological Networks

To investigate if such hierarchical organization is present in real networks we
measured the C(k) function for several networks for which large topological
maps are available. Next we discuss each of these systems separately.

Actor Network: Starting from the www.IMDB.com database, we connect any
two actors in Hollywood if they acted in the same movie, obtaining a network of
392,340 nodes and 15,345,957 links. Earlier studies indicate that this network is
scale-free with an exponential cutoff in P(k) for high & [12, 38} B9]. As Fig. Ebh

Fig. 4.5. The scaling of C(k) with k for four large networks: a Actor network, two
actors being connected if they acted in the same movie according to the www.IMDB.com
database. b The semantic web, connecting two English words if they are listed as
synonyms in the Merriam Webster dictionary [41]. ¢ The World Wide Web, based
on the data collected in [B]. d Internet at the Autonomous System level, each node
representing a domain, connected if there is a communication link between them. The
dashed line in each figure has slope —1, following ([T) (After [33])
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indicates, we find that C(k) scales as k~!, indicating that the network has a
hierarchical topology. Indeed, the majority of actors with a few links (small k)
appear only in one movie. Each such actor has a clustering coefficient equal
to one, as all actors the actor has links to are part of the same cast, and are
therefore connected to each other. The high & nodes include many actors that
acted in several movies, and thus their neighbors are not necessarily linked to
each other, resulting in a smaller C(k). At high k the C(k) curve splits into two
branches, one of which continues to follow (£1]), while the other saturates. One
explanation of this split is the decreasing amount of datapoints available in this
region. Indeed, in the high k region the number of nodes having the same k is
rather small. If one of these nodes corresponds to an actor that played only in
a few movies with hundreds in the cast, it will have both high k& and high C,
considerably increasing the average value of C(k). The k values for which such
a high C nodes are absent continue to follow the k=1 curve, resulting in jumps
between the high and small C values for large k. For small k these anomalies are
averaged out.

Language network: Recently a series of empirical results have shown that
the language, viewed as a network of words, has a scale-free topology [40), [41]
42] [43]. Here we study the network generated connecting two words to each
other if they appear as synonyms in the Merriam Webster dictionary [41]. The
obtained semantic web has 182,853 nodes and 317,658 links and it is scale-free
with degree exponent v = 3.25. The C(k) curve for this language network is
shown in Fig. [£35b, indicating that it follows ({I]), suggesting that the language
has a hierarchical organization.

World Wide Web: On the WWW two documents are connected to each other
if there is an URL pointing from one document to the other one. The sample
we study, obtained by mapping out the www.nd.edu domain [5], has 325,729
nodes and 1,497,135 links, and it is scale-free with degree exponents Yoyt = 2.45
and 7y, = 2.1, characterising the out and in-degree distribution, respectively. To
measure the C(k) curve we made the network undirected. While the obtained
C(k), shown in Fig. f5e, does not follow as closely the scaling law (£1]) as ob-
served in the previous two examples, there is clear evidence that C(k) decreases
rapidly with k, supporting the coexistence of many highly interconnected small
nodes with a few larger nodes, which have a much lower clustering coeflicient.

Indeed, the Web is full of groups of documents that all link to each other.
For example, www.nd.edu/~networks, our network research dedicated site, has
a high clustering coefficient, as the documents it links to have links to each
other. The site is one of the several network-oriented sites, some of which point
to each other. Therefore, the network research community still forms a relati-
vely cohesive group, albeit less interconnected than the www.nd.edu/~networks
site, thus having a smaller C'. This network community is nested into the much
larger community of documents devoted to statistical mechanics, that has an
even smaller clustering coefficient. Therefore, the k—dependent C'(k) reflects the
hierarchical nesting of the different interest groups present on the Web. Note
that C(k) ~ k=! for the WWW was observed and briefly noted in [44].
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Internet at the AS Level: The Internet is often studied at two different levels
of resolution. At the router level we have a network of routers connected by
various physical communication links. At the interdomain or autonomous system
(AS) level each administrative domain, composed of potentially hundreds of
routers, is represented by a single node. Two domains are connected if there is
at least one router that connects them. Both the router and the domain level
topology have been found to be scale-free [45]. As Fig. shows, we find that
at the domain level the Internet, consisting of 65,520 nodes and 24,412 links
[46], has a hierarchical topology as C'(k) is well approximated with ([I)). The
scaling of the clustering coefficient with k£ for the Internet was earlier noted
by Vazquez, Pastor-Satorras and Vespignani (VPSV) [47, 4R], who observed
C(k) ~ k=97 VPSV interpreted this finding, together with the observation
that the average nearest-neighbor connectivity also follows a power-law with the
node’s degree, as a natural consequence of the stub and transit domains, that
partition the network in a hierarchical fashion into international connections,
national backbones, regional networks and local area networks.

Our measurements indicate, however, that some real networks lack a hierar-
chical architecture, and do not obey the scaling law ([&I). In particular, we find
that the power grid and the router level Internet topology have a k independent
C(k).

Internet at the Router Level: The router level Internet has 260,657 nodes
connected by 1,338,100 links [49]. Measurements indicate that the network is
scale-free [45] 50] with degree exponent v = 2.23. Yet, the C(k) curve (Fig.[4.6Gh),
apart from some fluctuations, is largely independent of k, in strong contrast with
the C(k) observed for the Internet’s domain level topology (Fig. E5d), and in
agreement with the results of VPSV [47] 48], who also note the absence of a
hierarchy in router level maps.

10° 10

S~ % 107 ¢ [N o

C(k)

10

1 10 100 1000 1 10

Fig. 4.6. The scaling of C(k) for two large, non-hierarchical networks: a Internet at
router level [49]. b The power grid of Western United States. The dashed line in each
figure has slope —1, while the solid line corresponds to the average clustering coefficient
(After [33])
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Power Grid: The nodes of the power grid are generators, transformers and
substations and the links are high voltage transmission lines. The network stu-
died by us represents the map of the Western United States, and has 4,941 nodes
and 13,188 links [11]. The results again indicate that apart from fluctuations,
C(k) is independent of k.

It is quite remarkable that these two networks share a common feature: a
geographic organization. The routers of the Internet and the nodes of the power
grid have a well defined spatial location, and the link between them represent
physical links. In contrast, for the examples discussed in Fig. the physical
location of the nodes was either undefined or irrelevant, and the length of the link
was not of major importance. For the router level Internet and the power grid
the further are two nodes from each other, the more expensive it is to connect
them [50)]. Therefore, in both systems the links are driven by cost considerations,
generating a distance driven structure, apparently excluding the emergence of
a hierarchical topology. In contrast, the domain level Internet is less distance
driven, as many domains, such as the AT&T domain, span the whole United
States.

In summary, we offered evidence that for four large networks C(k) is well
approximated by C(k) ~ k™!, in contrast to the k—independent C(k) predicted
by both the scale-free and random networks. In addition, there is evidence for
similar scaling in the metabolism [I7] and protein interaction networks [51].
This indicates that these networks have an inherently hierarchical organization.
In contrast, hierarchy is absent in networks with strong geographical constraints,
as the limitation on the link length strongly constraints the network topology.

4.4 Hierarchy in Metabolic Networks and the Functional
Organization of Escherichia Coli

To investigate if hierarchical organization is present in cellular metabolism we
measured the C'(k) function for the metabolic networks of all 43 organisms. As
shown in Fig. EE7] for each organism C(k) is well approximated by C(k) ~ k=1,
in contrast to the k—independent C(k) predicted by both the scale-free and
modular networks. This provides direct evidence for an inherently hierarchical
organization.

A key issue from a biological perspective is whether the identified hierarchi-
cal architecture reflects the true functional organization of cellular metabolism.
To uncover potential relationships between topological modularity and the fun-
ctional classification of different metabolites we concentrate on the metabolic
network of Escherichia coli, whose metabolic reactions have been exhaustively
studied, both biochemically and genetically [52].

Using a previously established graph-theoretical representation [1], we first
subjected F. coli’s metabolic organization to a three step reduction process,
replacing non-branching pathways with equivalent links, allowing us to decrease
its complexity without altering the network topology [54]. Next, we calculated
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Fig. 4.7. The dependence of the clustering coefficient on the node’s degree in three or-
ganisms: a Aquidex Aeolicus (archaea), b FEscherichia Coli (bacterium), ¢ and Saccha-
romices cerevisiae (eukaryote). In d the C(k) curves averaged over all 43 organisms are
shown, while the inset displays all 43 species together. The dashed lines correspond to
C(k) ~ k™1, and in a—c the diamonds represent C'(k) expected for a scale-free network
(Fig.[4Th) of similar size, indicating the absence of scaling. The wide fluctuations are
due to the small size of the network (After [17])

the topological overlap matrix, Or(i,7), of the condensed metabolic network
(Fig. E])). A topological overlap of one between substrates ¢ and j implies that
they are connected to the same substrates, while a zero value indicates that ¢
and j do not share links to common substrates among the metabolites they react
with.

The metabolites that are part of highly integrated modules have a high to-
pological overlap with their neighbors, and we find that the larger the overlap
between two substrates within the E. coli metabolic network the more likely it
is that they belong to the same functional class.

As the topological overlap matrix is expected to encode the comprehensive
functional relatedness of the substrates forming the metabolic network, we inve-
stigated whether potential functional modules encoded in the network topology
can be uncovered automatically. Initial application of an average-linkage hierar-
chical clustering algorithm [53] to the overlap matrix of the small hypothetical
network shown in Fig. f.8a placed those nodes that have a high topological over-
lap close to each other (Fig. [4.8b). Also, the method has clearly identified the
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Fig. 4.8. a Topological overlap illustrated on a small hypothetical network. For each
pair of nodes, 7 and j, we define the topological overlap Ot (%, j) = Ju (4, 7)/[min(k;, k; )+
1—L(3, )], where Ju (7, j) denotes the number of nodes to which both ¢ and j are linked
to plus L(%,j), which is one if there is a direct link between 4 and j, zero otherwise,
and min(k;, k;) is the smaller of the k; and k; degrees. On each link we indicate the
topological overlap for the connected nodes and in parenthesis next to each node we
indicate it’s clustering coefficient. b The topological overlap matrix corresponding to
the small network shown in a. The rows and columns of the matrix were reordered by
the application of an average linkage clustering method [53] to its elements, allowing us
to identify and place close to each other those nodes that have high topological over-
lap. The color code denotes the degree of topological overlap between the nodes (see
sidebar). The associated tree clearly reflects the three distinct modules built into the
model of a, as well as the fact that the EFG and HIJK modules are closer to each other
in topological sense that the ABC module. ¢ The topologic overlap matrix correspon-
ding to the E. coli metabolism, together with the corresponding hierarchical tree (top)
that quantifies the relationship between the different modules. The branches of the
tree are color coded to reflect the functional classification of their substrates. The bio-
chemical classes we used to group the metabolites represent carbohydrate metabolism
(blue), nucleotide and nucleic acid metabolism (red), protein, peptide and amino acid
metabolism (green), lipid metabolism (cyan), aromatic compound metabolism (dark
pink), monocarbon compound metabolism (yellow) and coenzyme metabolism (light
orange) [29]. The color code of the matrix denotes the degree of topological overlap
shown in the matrix. On the bottom we show the large-scale functional map of the
metabolism, as suggested by the hierarchical tree (After [17])
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Fig. 4.9. 3-D representation of the reduced E. coli metabolic network. Each node is
color coded by the functional class to which it belongs, and is identical to the color code
applied to the branches of the tree shown in Fig. E.8. Note that the different functional
classes are visibly segregated into topologically distinct regions of metabolism. The
blue-shaded region denotes the nodes belonging to pyrimidine metabolism, discussed
below (After [17])

three distinct modules built into the model of Fig. E8a, as illustrated by the
fact that the EFG and HIJK modules are closer to each other in a topological
sense than the ABC module (Fig. E8b).

Application of the same technique on the E. coli overlap matrix Or(i, j) pro-
vides a global topologic representation of E. coli metabolism (Fig.L8c). Groups
of metabolites forming tightly interconnected clusters are visually apparent, and
upon closer inspection the hierarchy of nested topologic modules of increasing
sizes and decreasing interconnectedness are also evident. To visualize the relati-
onship between topological modules and the known functional properties of the
metabolites, we color coded the branches of the derived hierarchical tree accor-
ding to the predominant biochemical class of the substrates it produces, using the
standard, small molecule biochemistry based classification of metabolism [29].

As shown in Fig.[4£8k, and in the three dimensional representation in Fig.
we find that most substrates of a given small molecule class are distributed on the
same branch of the tree (Fig. L8k) and correspond to relatively well-delimited
regions of the metabolic network (Fig. £9). Therefore, there are strong corre-
lations between shared biochemical classification of metabolites and the global
topological organization of E. coli metabolism (Fig. L8k, bottom, and [54]).
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Fig. 4.10. A detailed diagram of the metabolic reactions that surround and incorporate
the pyrimidine metabolic module. Red boxes denote the substrates directly appearing
in the reduced metabolism and the tree shown in Fig.[49] Substrates in green boxes are
internal to pyrimidine metabolism, but represent members of non-branching pathways
or end pathways branching from a metabolite with multiple connections [54]. Blue
and black boxes show the connections of pyrimidine metabolites to other parts of the
metabolic network. Black boxes denote core substrates belonging to other branches
of the metabolic tree Fig. [Z8c, while blue boxes denote non-branching pathways (if
present) leading to those substrates. The shaded boxes around the reactions highlight
the modules suggested by the hierarchical tree. The shaded blue boxes along the links
display the enzymes catalyzing the corresponding reactions, and the arrows show the
direction of the reactions according to the WIT metabolic maps [29]. (After [17])

To correlate the putative modules obtained from our graph theory-based ana-
lysis to actual biochemical pathways, we concentrated on the pathways involving
the pyrimidine metabolites. Our method divided these pathways into four pu-
tative modules (Fig. EEI0h), which represent a topologically well-limited area of
E. coli metabolism (Fig. @3] circle).

As shown in Fig. E10b, all highly connected metabolites (Fig. [L10b, red
bozxes) correspond to their respective biochemical reactions within pyrimidine
metabolism, together with those substrates that were removed during the origi-
nal network reduction procedure, and then re-added (Fig. [Z10b, green bozes).
However, it is also apparent that putative module boundaries do not always
overlap with intuitive ‘biochemistry-based’ boundaries. For instance, while the
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synthesis of UMP from L-glutamine is expected to fall within a single module
based on a linear set of biochemical reactions, the synthesis of UDP from UMP
leaps putative module boundaries. Thus, further experimental and theoretical
analyses will be needed to understand the relationship between the decompo-
sition of E. coli metabolism offered by our topology-based approach, and the
biologically relevant sub-networks.

The organization of metabolic networks is likely to combine a capacity for
rapid flux reorganization with a dynamic integration with all other cellular fun-
ction [2]. Our results indicate that the system-level structure of cellular metabo-
lism is best approximated by a hierarchical network organization with seamles-
sly embedded modularity. In contrast to current, intuitive views of modularity
(Fig. EIb) which assume the existence of a set of modules with a non-uniform
size potentially separated from other modules, we find that the metabolic net-
work has an inherent self-similar property: there are many highly integrated
small modules, which group into a few larger modules, which in turn can be
integrated into even larger modules. This is supported by visual inspection of
the derived hierarchical tree (Fig. B8c), which offers a natural breakdown of me-
tabolism into several large modules, which are further partitioned into smaller,
but more integrated sub-modules.

4.5 Stochastic Model and Universality

The hierarchical model described in Fig. [4.3 predicts C'(k) ~ k!, which offers
a rather good fit to three of the four C'(k) curves shown in Fig. L5 The que-
stion is, is this scaling law (1) universal, valid for all hierarchical networks, or
could different scaling exponent characterize the scaling of C'(k)? Defining the
hierarchical exponent, 3, as

Clk) ~ k=P, (4.2)

is 0 = 1 a universal exponent, or it’s value can be changed together with ~?
In the following we demonstrate that the hierarchical exponent 5 can be tuned
as we tune some of the network parameters. For this we propose a stochastic
version of the model described in Fig. 3]

We start again with a small core of five nodes all connected to each other
(Fig. E3a) and in step one (n = 1) we make four copies of the five node module.
Next, we randomly pick a p fraction of the newly added nodes and connect each
of them independently to the nodes belonging to the central module. We use
preferential attachment [12), [I3] to decide to which central node the selected
nodes link to. That is, we assume that the probability that a selected node will
connect to a node ¢ of the central module is k;/ > ; ki, where k; is the degree of
node 7 and the sum goes over all nodes of the central module. In the second step
(n = 2) we again create four identical copies of the 25-node structure obtained
thus far, but we connect only a p? fraction of the newly added nodes to the
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Fig. 4.11. The scaling properties of the stochastic model. a The degree distribution for
different p values, indicating that P(k) follows a power law with a p dependent slope.
b The dependence of the degree exponent v on p, determined by fitting power laws to
the curves shown in a. The exponent v appears to follow approximately v(p) ~ 1/p
(dashed line). ¢ The C(k) curve for different p values, indicating that the hierarchical
exponent 3 depends on p. d The dependence of 3 on the parameter p. The simulations
were performed for N = 57(78,125) nodes (After [33])

central module. Subsequently, in each iteration n the central module of size 5"
is replicated four times, and in each new module a p™ fraction will connect to
the current central module, requiring the addition of (5p)™ new links.

As Fig. [Tl shows, changing p alters the slope of both P(k) and C(k) on
a log—log plot. In general, we find that increasing p decreases the exponents =y
and 3 (Fig. [£11b,d). The exponent 3 = 1 is recovered for p = 1, i.e. when all
nodes of a module gain a link. While the number of links added to the network
changes at each iteration, for any p < 1 the average degree of the infinitely large
network is finite. Indeed, the average degree follows

= (241520, s

which is finite for any p < 1.

Interestingly, the scaling of C'(k) is not a unique property of the model di-
scussed above. A version of the model, where we keep the fraction of selected
nodes, p, constant from iteration to iteration, also generates p dependent 3 and
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~v exponents. Furthermore, recently several results indicate that the scaling of
C(k) is an intrinsic feature of several existing growing networks models. Indeed,
aiming to explain the potential origin of the scaling in C(k) observed for the
Internet, VSPV note that the fitness model [55 56] displays a C(k) that ap-
pears to scale with k. While there is no analytical evidence for C(k) ~ k=7 yet,
numerical results [47] 48] suggest that the presence of fitness does generate a
hierarchical network architecture. In contrast, in a recent model proposed by
Klemm and Eguiluz there is analytical evidence that the network obeys the sca-
ling law () [57]. In their model in each time step a new node joins the network,
connecting to all active nodes in the system. At the same time an active node
is deactivated with probability p ~ k~!. The insights offered by the hierarchical
model can help understand the origin of the observed C(k) ~ k~!. By deac-
tivating the less connected nodes a central core emerges to which all subsequent
nodes tend to link to. New nodes have a large C' and small k, thus they are
rapidly deactivated, freezing into a large C' state. The older, more connected,
surviving nodes are in contact with a large number of nodes that have already
disappeared from the active list, and they have small .

Finally, Szabd, Alava and Kertész have developed a rate equation method to
systematically calculate C(k) for evolving networks models [59]. Applying the
method to a model proposed by Holme and Kim [60] to enhance the degree of
clustering coefficient C' seen in the scale-free model [12], they have shown that
the scaling of C'(k) depends on the parameter p, which governs the rate at which
new nodes connect to the neighbors of selected nodes, bypassing preferential
attachment. As for p = 0 the Holme-Kim model reduces to the scale-free model,
Szab6, Alava and Kertész find that in this limit the scaling of C'(k) vanishes.
These models indicate that several microscopic mechanisms could generate a
hierarchical topology, just as several models are able to create a scale-free net-
work [7} [§].

4.6 Discussion and Outlook

The identified hierarchical architecture offers a new perspective on the topology
of complex networks. Indeed, the fact that many large networks are scale-free is
now well established. It is also clear that most networks have a modular topology,
quantified by the high clustering coefficient they display. Such modules have
been proposed to be a fundamental feature of biological systems [24], [17], but
have been discussed in the context of the WWW [61], 31], and social networks as
well [30] [62]. The hierarchical topology offers a new avenue for bringing under a
single roof these two concepts, giving a precise and quantitative meaning for the
network’s modularity. It indicates that we should not think of modularity as the

3 Note, however, that as new nodes tend to connect to nodes that were added to
the network shortly before them, the model generates a close to one dimensional
structure in time. See e.g. [5§]
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coexistence of relatively independent groups of nodes. Instead, we have many
small clusters, that are densely interconnected. These combine to form larger,
but less cohesive groups, which combine again to form even larger and even less
interconnected clusters. This self-similar nesting of different groups or modules
into each other forces a strict fine structure on real networks.

For biological systems hierarchical modularity is consistent with the notion
that evolution may act at many organizational levels simultaneously: the accu-
mulation of many local changes, that affect the small, highly integrated modu-
les, could slowly impact the properties of the larger, less integrated modules.
The emergence of the hierarchical topology via copying and reusing existing
modules [24] and motifs [23], a process reminiscent of the results of gene du-
plication [63] [64], offers a special role to the modules that appeared first in
the network. While the model of Fig. L4l reproduces the large-scale features of
the metabolism, understanding the evolutionary mechanism that explains the si-
multaneous emergence of the observed hierarchical and scale-free topology of the
metabolism, and its generality to cellular organization, is now a prime challenge.

Most interesting is, however, the fact that the hierarchical nature of these
networks is well captured by a simple quantity, the C(k) curve, offering us a
relatively straightforward method to identify the presence of hierarchy in real
networks. The law (£1]) indicates that the number and the size of the groups of
different cohesiveness is not random, but follow rather strict scaling laws.

The presence of such a hierarchical architecture reinterprets the role of the
hubs in complex networks. Hubs, the highly connected nodes at the tail of the
power law degree distribution, are known to play a key role in keeping complex
networks together, playing a crucial role from the robustness of the network [65]
66| to the spread of viruses in scale-free networks [67]. Our measurements indicate
that the clustering coefficient characterizing the hubs decreases linearly with the
degree. This implies that while the small nodes are part of highly cohesive,
densely interlinked clusters, the hubs are not, as their neighbors have a small
chance of linking to each other. Therefore, the hubs play the important role
of bridging the many small communities of clusters into a single, integrated
network.

In many ways our study offers only a starting point for understanding the in-
terplay between the scale-free, hierarchical and modular nature of real networks.
While the C(k) curves offer a tool to unearth the presence of a hierarchy, it is
unclear what are the minimal ingredients at the model level for such a hierarchy
to emerge. Finally, the role of the geometrical factor, which appears to remove
the hierarchy, needs to be elucidated. Further modeling and empirical studies
should allow us to address these questions.
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Abstract. Common experience suggests that many networks might possess commu-
nity structure — division of vertices into groups, with a higher density of edges within
groups than between them. Here we describe a new computer algorithm that detects
structure of this kind. We apply the algorithm to a number of real-world networks and
show that they do indeed possess non-trivial community structure. We suggest a possi-
ble explanation for this structure in the mechanism of assortative mixing, which is the
preferential association of network vertices with others that are like them in some way.
We show by simulation that this mechanism can indeed account for community struc-
ture. We also look in detail at one particular example of assortative mixing, namely
mixing by vertex degree, in which vertices with similar degree prefer to be connected
to one another. We propose a measure for mixing of this type which we apply to a
variety of networks, and also discuss the implications for network structure and the
formation of a giant component in assortatively mixed networks.

5.1 Introduction

Much of the recent research on the structure of networks of various kinds has
looked at properties like path lengths, transitivity, degree distributions, and resi-
lience of networks to vertex deletion [42] 2], [15], all of which, while of exceptional
importance in many contexts, tend to focus our attention on the properties of
individual vertices or vertex pairs — how far apart they are, what their degrees
are, and so forth. However, in other contexts it may be equally important to ask
about the large-scale properties of the network as a whole. Numbers of compo-
nents and their distribution of sizes would be an example of such a property, one
which is relevant to issues of accessibility [10] and to epidemiology [I8] [7, [31].
Searchability and the performance of search algorithms on networks would be
another [25] [} 45]. A third is the existence and effects of large-scale inhomo-
geneity in networks — what we call “community structure”, the presence (or
absence) in the network of regions with high densities of connections between
vertices and other regions with low densities — and it is with a discussion of
this topic that we begin this paper. (In some circles, this phenomenon is cal-
led “clustering”, an unfortunate terminology which risks confusion with another
use of the word clustering introduced recently by Watts and Strogatz [46]. We
will use the word clustering only in reference to hierarchical clustering, which
is a standard technique for community detection; otherwise we will avoid it.)

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 66-87, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Our investigation of community structure will lead us to consideration of mixing
patterns in networks — which vertices connect to which others and why — as an
explanation for observed communities in networks of all kinds, and eventually to
consideration of more general classes of correlated networks including networks
with correlations between the degrees of adjacent vertices.

Much of the work reported in this article has appeared previously in various
papers, which the reader may like to consult for more detail than we can give
here [17, [35, [36].

5.2 Community Structure

The oldest studies by far of the large-scale statistical properties of networks are
the studies of social networks carried out within the sociological community,
which stretch back at least to the 1930s [44] 4I]. Social networks are network
representations of relationships of some kind, generically called “ties”, between
people or groups of people, generically called “actors”. Actors might be individu-
als, organizations or companies, while ties might represent friendship, acquain-
tance, business relationships or financial transactions, amongst other things.

A long-standing goal among social network analysts has been to find ways
of analysing network data to reveal the structure of the underlying communities
that they represent. It is commonly supposed that the actors in most social
networks divide themselves naturally into groups of some kind, such that the
density of ties within groups is higher than the density of ties between them. A
sketch of a network with such community structure is shown in Fig. 51l

It is a matter of common experience that social networks do contain commu-
nities. We look around ourselves and see that we belong to this clique or that,
that we have a circle of close friends and others whom we know less well, that
there are groupings within our personal networks on the basis of interest, occu-

Fig. 5.1. A figurative sketch of a network possessing community structure of the type
discussed here



68 M.E.J. Newman and M. Girvan

pation, geographical location and so forth. This does not however guarantee that
a network contains community structure of type that we are considering here. It
would be perfectly possible for each person in a network to have a well-defined
set of close acquaintances, their own personal network neighbourhood, but for
the network neighbourhoods of different people to overlap only partially, so that
the network as a whole is quite homogeneous, with no clear communities emer-
ging from the pattern of vertices and edges. A network model showing precisely
this type of structure has been proposed and studied recently by Kleinberg [26].
Our purpose in this section will be to investigate methods for detecting whether
true community structure does exist in networks and for extracting the commu-
nities, and to apply those methods to particular networks. As we will see, the
early intuition of the sociologists was correct, and many of the networks studied,
including non-social networks, do possess large-scale inhomogeneity of precisely
the type that would indicate the presence of community divisions.

The problem then is to take a network, specified in the simplest case by a list
of n vertices joined in pairs by m edges, and from this structure to extract a set of
communities — non-overlapping subsets of vertices that are, in some sense, tightly
knit, having stronger within-group connections than between-group connections.
The traditional, and still most common, method for detecting structure of this
kind is the method of “hierarchical clustering” [44], 4I]. In this method one defi-
nes a connection strength for each pair of vertices in the network, i.e., %n(n -1)
numbers that represent a distance or weight for the connection between each
pair. (In some versions of the method not all pairs are assigned a connection
strength, in which case those that are not can be assumed to have a connection
strength of zero.) Examples of possible definitions for the strengths include ge-
odesic (shortest path) distances between pairs, or their inverses if one wants a
measure that increases when pairs are more closely connected, counts of num-
bers of vertex- or edge-independent paths between pairs (“maxflow” methods)
or weighted counts of total numbers of paths between pairs (adjacency matrix
methods).

Then, starting with the n vertices but no edges between them, one joins
vertices together in order of the weights of vertex pairs, ignoring the edges of
the original network. One can pause at any stage in this process and observe
the pattern of components formed by the connections added so far, which are
taken to be the communities of the network at that stage. The heirarchical
clustering method thus defines not just a single decomposition of the network
into communities, but a nested hierarchy of possible decompositions, having
varying numbers of communities. This hierarchy can be represented as a tree
or “dendrogram”, an example of which is shown in Fig. A horizontal cut
through the dendrogram at any given height, such as that denoted by the dotted
line in Fig. 52 splits the tree into the communities for the corresponding stage
in the hierarchical clustering process. By varying the height of the cut, one can
arrange for the number communities to take any desired value.

The construction of dendrograms is a popular technique for the analysis of
network data, particularly within the sociological community. Software packa-
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1)

Fig. 5.2. An example of a dendrogram showing the hierarchical clustering of ten
vertices. A horizontal cut through the dendrogram, such as that denoted by the dotted
line, splits the vertices into a set of communities, five in this case

ges for network analysis, such as Pajek and UCInet, incorporate hierarchical
clustering as a standard feature: for any network one can calculate a huge va-
riety of vertex—vertex weights of different types and construct the corresponding
dendrogram for any of them. The method however has some problems. There
are many cases in which networks have rather obvious community structure, but
hierarchical clustering fails to find it. One particular pathology that is frequently
observed is that peripheral vertices tend to get disconnected from the bulk of
the network, rather than being associated with the groups or communities that
they are primarily attached to. For example, if a vertex is connected to the rest
of the network by only a single edge, then presumably, were one to assign it to
a community, it would be assigned to the community that the single edge leads
to. In many cases, however, the hierarchical clustering method will declare the
vertex instead to be a single-vertex community in its own right, in complete
disagreement with our intuitive ideas of community structure.

In a recent paper therefore [17] we have proposed an alternative method for
detecting community structure, based on calculations of so-called edge betweenn-
ess for vertex pairs. As we will see, this method detects the known community
structure in a number of networks with remarkable accuracy.

5.2.1 Edge Betweenness and Community Detection

Freeman [16] proposed a measure of centrality for the actors in a social network
which he called “betweenness”. The betweenness of an actor is defined to be the
number of shortest paths between pairs of vertices that pass through that actor.
In cases where the number p of shortest paths between a vertex pair is greater
than one, each path is given an equal weight of 1/p. Trivial algorithms for calcu-
lating betweenness take O(mn?) time to calculate betweenness for all vertices,
or O(n3) time on a sparse graph (i.e., one in which the number of edges per
vertex is constant in the limit of large graph size). This makes the calculation
prohibitively costly on large networks. Recently however, two new algorithms
have been proposed [33] 9] that both allow the same calculation to be performed
faster, in time O(mn), or O(n?) on a sparse graph, by eliminating needless re-
calculations of geodesic paths. The betweenness of a vertex gives an indication,
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as the name implies, of how much the vertex is “between” other vertices. If, for
example, information (or anything else) spreads through a network primarily by
following shortest paths, then betweenness scores will indicate through which
vertices most information will flow on average. The vertices with highest bet-
weenness are also those whose removal will result in an increase to the geodesic
distance between the largest number of other vertex pairs.

Here we consider an extension of Freeman’s betweenness to the edges in a
network. The betweenness of an edge is defined to be the number of shortest
paths between pairs of vertices that run along that edge, with paths again being
given weights 1/p when there are p > 1 between a given pair of vertices. In
fact, the concept of edge betweenness actually appears to predate Freeman’s
work on vertex betweenness, having appeared in an obscure technical report
by an Amsterdam mathematician some years earlier [4]. Edge betweenness has
received very little attention in other literature until recently, but it provides
us with an excellent measure of which edges in a network lie between different
communities. In a network with strong community structure — groups of vertices
with only a few inter-group edges joining them — at least some of the inter-
group edges will necessarily receive high edge betweenness scores, since they must
carry the geodesic paths between vertex pairs that lie in different communities.
This implies that eliminating edges with high edge betweenness from a graph
will remove the inter-group edges, and hence split the graph efficiently into its
different groups. This is the principle behind our method for the detection of
community structure. Our algorithm is as follows.

1. We calculate the edge betweenness of every edge in the network.

2. We remove the edge with the highest betweenness score, or randomly choose
one such if more than one edge ties for the honour.

3. We recalculate betweenness scores on the resulting network and repeat from
step 2 until no edges remain.

The recalculation in step 3 is crucial to the method’s success. When there is
more than one inter-group edge between two groups of vertices, there is no
guarantee that both will receive high betweenness scores; in some cases most
geodesic paths with flow along one edge and only that one will receive a high
score. Recalculation ensures that at some stage in the working of the algorithm
each inter-group edge receives a high score and thus gets removed.

The calculation of all edge betweennesses takes time O(mn), and its re-
petition for all m edges thus gives the algorithm a worst-case running time
of O(m?n), or O(n?) on a sparse graph. The results of the algorithm can be
represented as a dendrogram, just as in traditional hierarchical clustering, alt-
hough one should be aware that the construction of the tree is not logically
the same: the recalculation of the betweennesses after each edge removal means
that there is no single function that can be defined for each edge in the initial
graph such that the resulting dendrogram is the representation of a hierarchical
clustering construction carried out using that function.
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5.2.2 Examples

Here we give three examples of the application of our community structure fin-
ding algorithm to different networks. The first example is a set of computer
generated graphs, specifically created to test the algorithm. We created a large
number of graphs of 128 vertices each, divided into four groups of 32. Edges were
placed at random between vertices within the same group with probability p;,
and between vertices in different groups with probability pout, with the values
of pin and poyt chosen to make the average degree of a vertex equal to 16, and
Pout < Pin- These graphs were then fed into our community structure algorithm,
and we measured what fraction of the vertices were correctly classified into their
communities as a function of the ratio of pi, to pout, or equivalently the mean
number z,,; of edges from a vertex to vertices in other communities. The results
are shown in Fig. 6.3 As the figure shows, the algorithm performs almost per-
fectly for values of zy,; up to about 6. Beyond this point, as zo,; approaches the
value of 8 at which each vertex has as many inter-group edges as intra-group
ones, the fraction of successfully classified vertices falls off sharply.

On the same plot we also show the performance of a standard hierarchical
clustering algorithm based on edge-independent path counts (maxflow) on the
same set of random graphs. As the figure shows, the traditional method is far
inferior to our new algorithm in finding the known community structure.

1.0 g

0.5

fraction of vertices classified correctly

0.0
0 2 4 6 8

average number of inter—community edges per vertex

Fig. 5.3. The fraction of vertices correctly classified in applications of community
structure finding algorithms to the computer-generated graphs described in the text.
The circles are results for the method presented in this paper and the squares are for the
standard hierarchical clustering method, using a maximum-flow measure of connection
strength between vertex pairs. Each point is an average over 100 realizations of the
graphs
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Fig. 5.4. a The friendship network given by Zachary [49] for his karate club study.
Grey squares represent individuals who in the fission of the club sided with the club’s
instructor, while open circles represent individuals who sided with the club’s president.
b The dendrogram representing the community divisions found by our method for this
network, with the same colouring scheme for the vertices

For our second example, we move to real-world network data. In 1977, Wayne
Zachary published the results of an ethnographic study he had conducted of
social interactions between 34 members of a karate club at an American univer-
sity [49]. He recorded social contacts between members of the club over a two
year period and published his results in the form of social networks. Fortuitously
there arose, during the course of the study, a dispute between the two leaders
of the club, the karate teacher and the club’s president, over whether to raise
the club’s fees. Ultimately, the dispute resulted in the departure of the karate
teacher and his starting another club of his own, taking with him about a half of
the original club’s members. Here we analyse a network constructed by Zachary
of friendships between club members before the split occurred. We compare the
predictions of our community-finding algorithm applied to this network with the
known lines along which the club divided. Our results are shown in Fig. (.4]

In panel (a) of the figure we show the original network, with the grey squares
representing the faction that ultimately sided with the teacher (who is vertex
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number 1), and the open circles the faction that sided with the club’s president
(vertex number 34). In panel (b) we show the dendrogram output by our algo-
rithm for this network. As the figure shows, the algorithm again performs nearly
perfectly, with only one vertex, vertex number 3, being misclassified. (Inspection
of panel (a) reveals that vertex 3 is in fact precisely caught in the middle of the
network between the two factions, and so it is not entirely surprising that this
vertex was misclassified.) Bear in mind that the network in this example was
recorded before the fission of the club, so that the results of panel (b) are in
some sense a prediction of events that were, at that time, yet to occur.

Finally, for our third example, we take a network for which we do not have
any strong presuppositions about a “correct” division into communities. This
example is a true experiment to see what information the algorithm can give
us about a network whose structure is not wholly understood. The network in
question is a food web, the web of trophic interactions (who eats whom) of
marine organisms living in the Chesapeake Bay. The network was assembled by
Baird and Ulanowicz [5] and contains 33 vertices representing the ecosystem’s
most prominent taxa. The edges in a food web are, technically, directed; they
can be thought of as pointing from prey to their predators, thus indicating the
direction of energy (or carbon) flow up the food chain. Here however we have
ignored the directed nature of the network, considering the edges merely to be
undirected indicators of trophic interaction between taxon pairs.

The dendrogram produced for this food web by our community structure
algorithm is shown in Fig.[5.5l As we can see, the algorithm splits the network
into two principle communities and a couple of smaller peripheral ones. We have
coloured the vertices in the dendrogram to show which taxa are surface dwellers
in the bay (pelagic species) and which bottom dwellers (benthic species). A few
species are of undetermined status. It is clear that our algorithm has in this
case primarily extracted from the network the distinction between pelagic and
benthic taxa. Thus our results appear to imply that the food web in question
can be split roughly into separate surface- and bottom-dwelling subsystems, with
relatively weak interaction between the two. A small number of benthic species
are found to belong more strongly to the pelagic community than to the benthic
one, perhaps indicating that a simple classification of species by where they live
is not telling the whole story for this system. The results of our analysis might
also be helpful in assigning a type to the undetermined species in the network.

5.3 Origins of Community Structure and Assortative
Mixing

There is certainly more than one possible explanation for the presence of com-
munity structure in a network, and different explanations may be appropriate
to different networks. In the case of a social network, for example, Jin et al. [24]
have shown that communities can arise as a result of growth dynamics of a net-
work. If an acquaintance network grows by the introduction of pairs of people
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Fig. 5.5. The dendrogram found by our method for Baird and Ulanowicz’s food web
of marine organisms in the Chesapeake Bay [5]

to one another by a mutual acquaintance, then an initial chance acquaintance
with a member of a certain community will lead to introductions to other mem-
bers of that community, so that one ultimately becomes linked to many of the
community’s members and so becomes a member oneself. Using a simple com-
puter model of this process, Jin et al. found that even networks with no initial
community structure quickly develop such structure over time. One can think of
this as a mechanism for the development of cliquishness in social networks.

This mechanism however is quite specific to social networks and could not be
easily applied, for example, to the food web studied in the last section. It also
completely ignores any personal attributes of the actors involved or affinities
between actor pairs. A more general and perhaps more convincing explanation
for community formation, which takes these things into account, is that of assor-
tative mixing 1 which is the tendency for nodes in a network to form connections
preferentially to others that are like them in some way.

An example of assortative mixing in social networks is mixing by race.
Table B0 shows data from the AMEN (AIDS in Multiethnic Neighborhoods)
study [I1], on mixing by race among sexual partners in the city of San Fran-
cisco, California. This part of the study focused on heterosexual partnerships,

4 The name “assortative mixing” comes from the epidemiology community, where
this effect has been studied extensively. It is also sometimes called “assortative mat-
ching” | particularly by ecologists.
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Table 5.1. The mixing matrix e;; and the values of a; and b; for sexual partnerships
in the San Francisco study described in the text. After Morris [32]

women

black hispanic white other| a;
black|0.258 0.016 0.035 0.013|0.323
hispanic|0.012 0.157 0.058 0.019|0.247
white[0.013 0.023 0.306 0.035|0.377
other|0.005 0.007 0.024 0.016/0.053
b;(0.289 0.204 0.423 0.084

men

and the rows and columns of the matrix represent men and women in such part-
nerships, grouped by their (self-identified) race. Diagonal elements of the matrix
represent the fraction of survey respondents in partnerships with members of
their own group, and off-diagonal those in partnerships with members of other
groups. Inspection of the figures shows that the matrix has considerably more
weight along its diagonal than off it, indicating that assortative mixing does
take place in this network. One might well expect mixing of this type to result
in divisions within the community along lines of race, and we will show shortly
that, within the context of simulations of network formation, assortative mixing
can indeed give rise to such community structure.

The amount of assortative mixing in a network can be characterized by mea-
suring how much of the weight in the mixing matrix falls on the diagonal, and
how much off it. Let us define e;; to be the fraction of all edges in a network
that join a vertex of type i to a vertex of type j. In the case of the matrix of Ta-
ble[5.1], where the ends of an edge always attach to one man and one woman, we
should also specify which index corresponds to which type of end, which makes
e;; asymmetric. For example, we could specify that the first index ¢ represents
the man and the second j the woman. For networks in which there is no corre-
sponding distinction, e;; will be symmetric. The matrix should also satisfy the

sum rules
Z eij = 1, Z €ij = Gy, Z eij = by, (5.1)
ij j i

where a; and b; are the fraction of each type of end of an edge that is attached
to vertices of type i. The values of a; and b; for the San Francisco study are also
shown in Table[BJl On graphs where there is no distinction between the ends of
edges, we will have a; = b;.

Now we can define a quantitative measure r of the level of assortative mixing
in the network thus [36]:

doiti— 2 aibi  Tre—|[e?|]
T = =
137 ab; 1—|le?]| ’

(5.2)

where e is the matrix whose elements are the e;;, and the notation || x || indicates
the sum of the elements of the matrix x. We call the quantity r the “assortativity
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coefficient”. It takes the value 1 in a perfectly assortative network, since in that
case the entire weight of the matrix e lies along its diagonal and ), e; = 1.
Conversely, if there is no assortative mixing at all, then e;; = a;b; for all 4, j and
r = 0. Networks can also be disassortative: vertices may associate preferentially
with others of different types — the “opposites attract” phenomenon. In that
case, r will take a negative value.

One can certainly imagine that assortative mixing might apply in other types
of networks as well. For example, we saw in Sect. 5.2.2] that a food web of marine
organisms apparently divided into communities along lines of location — which
species were surface dwellers (pelagic) and which bottom dwellers (benthic). It
seems reasonable to hypothesize that the evolution of new predatory relations-
hips between species is biased by the location of those species’ living quarters,
and hence that the network structure would indeed reflect the pelagic/benthic
division as a result of assortative mixing by location.

We can test our hypothesis that assortative mixing could be responsible
for community formation in networks by computer simulation. Given a mixing
matrix of the type shown in Table 5] we can create a random network with
the corresponding mixing pattern and any desired degree distribution by the
following algorithm.

1. First we choose degree distributions p,(f) for each vertex type i. The quantity
pg) here denotes the probability that a randomly chosen vertex of type i will

have degree k. We can also calculate the mean degree z; = >, kp,(;) for each
vertex type.

2. Next we choose a size for our graph in terms of the number m of edges and
draw m edges from the desired distribution e;;. We count the number of
ends of edges of each type i, to give the sums m; of the degrees of vertices in
each class, and we calculate the expected number n; of vertices of each type
from n; = m;/z; (rounded to the nearest integer).

3. We draw n; vertices from the desired degree distribution p,(;) for type 1.
Normally the degrees of these vertices will not sum exactly to m; as we want
them to, in which case we choose one vertex at random, discard it, and draw
another from the distribution p,(;), repeating until the sum does equal m;.

4. We pair up the m; ends of edges of type i at random with the vertices
we have generated, so that each vertex has the number of attached edges
corresponding to its chosen degree.

5. We repeat from step 3 for each vertex type.

We have used this algorithm to generate example networks with desired levels
of assortative mixing. For example, Fig. shows an undirected network of
n = 100 vertices of four different types, generated using the symmetric mixing
matrix
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Fig. 5.6. A network generated using the mixing matrix of (£.3) and a Poisson degree
distribution with mean z = 5. The four different shades of vertices represent the four
types, and the four shapes represent the communities discovered by the community-
finding algorithm of Sect. BZZTl The placement of the vertices has also been chosen
to accentuate the communites and show where the algorithm fails. As we can see,
the correspondence between vertex type and the detected community structure is very
close; only nine of the 100 vertices are misclassified

0.18 0.02 0.01 0.03
0.02 0.20 0.03 0.02
€= 10.010.030.16 0.01 |’ (53)

0.03 0.02 0.01 0.22

which gives a value of » = 0.68 for the assortativity coefficient. A simple Poisson
degree distribution with mean z = 5 was used for all vertex types. The graph was
then fed into the community finding algorithm of Sect.[R.21] and a cut through
the resulting dendrogram performed at the four-community level. The communi-
ties found are shown by the four shapes of vertices in the figure and correspond
very closely to the real vertex type designations, which are represented by the
four different vertex shades. In other words, by introducing assortative mixing
by vertex type into this network, we have created vertex-type communities that
register in our community finding algorithm in exactly the same way as commu-
nities in naturally occurring networks. This strongly suggests that assortative
mixing could indeed be an explanation for the occurrence of such communi-
ties, although it is worth repeating once again that other explanations are also
possible.
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5.4 Other Types of Assortative Mixing

Assortative mixing can depend on vertex properties other than the simple enu-
merative properties discussed in the preceding section. For example, we can also
have assortative mixing by scalar characteristics, either discrete or continuous.
A classic example of such mixing, much studied in the sociological literature,
is acquaintance matching by age. In many contexts, people appear to prefer to
associate with others of approximately the same age as themselves. As an exam-
ple of such mixing, consider Fig. B-7, which shows the ages at marriage of the
male and female members of 1141 married couples drawn from the US National
Survey of Family Growth [14]. Each point in the figure represents one couple, its
position along the horizontal and vertical axes corresponding to the ages of the
husband and wife respectively. The study was based on interviews with women,
and was limited to those of childbearing age, so the vertical axis cuts off aro-
und 40. Also only the first marriage for each woman interviewed is shown, even
if she married more than once. Despite these biases however, the figure reveals
a clear trend: people prefer to marry others of an age close to their own.

It is perhaps stretching a point a little to consider first marriage ties between
couples as forming a social network, since people have at most one first marriage
and hence would have a maximum degree of one within the network. Here,
however, we consider marriage age as a proxy for the ages of sexual partners in
general, and conjecture that a similar age preference will be seen in non-married
partners also, although we are not aware of any specific data to that effect.

Assortative mixing according to scalar characteristics can result in the forma-
tion of communities, just as in the case of discrete characteristics. One could have
separate communities formed of old and young people, for instance. However, it

40

30 — A

age of wife

20 —

age of husband

Fig. 5.7. Scatter plot of the ages at first marriage of 1141 women interviewed in the
1995 National Survey of Family Growth, and their spouses. Only women of up to 45
years of age were interview, so the vertical axis does not extend as far as the horizontal
one
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is also possible that we do not get well-defined communities, but instead get an
overlapping set of groups with no clear boundaries, ranging for example from
low age to high age. In the sociological literature such a continuous gradation of
one community into another is called “stratification” of the network.

As with assortative mixing on discrete characteristics, one can define an as-
sortativity coefficient to quantify the extent to which mixing is biased according
to scalar vertex properties. To do this, we define e,, to be the fraction of ed-
ges in our network that connect a vertex of property z (e.g., age) to another of
property y. The matrix e,, must satisfy sum rules as before, of the form

Z Czy = 1, Zewy = Qg, Z Cry = by, (54)
Ty y T

where a, and b, are, respectively, the fraction of edges that start and end at
vertices with ages x and y. Then the appropriate definition for the assortativity
coefficient is

Zzy af;y(ezy - afrby)

= 5.5
r p— : (5.5)

where 0, and o, are the standard deviations of the distributions a, and b,,.
The reader will no doubt recognize this definition of r as the standard Pearson
correlation coefficient for the quantities x and y. It takes values in the range
—1 < r <1 with » = 1 indicating perfect assortative mixing, r = 0 indicating
no correlation between x and y, and r = —1 indicating perfect disassortative
mixing, i.e., perfect anticorrelation between x and y.

If we take the marriage data from Fig.[57] for example, and feed it into (5:5)),
we find that » = 0.57, indicating once again that mixing is strongly assortative
(as is in any case obvious from the figure).

Mixing could also depend on vector or even tensor characteristics of verti-
ces. One example would be mixing by geographical location, which could be
regarded as a two-vector. It seems highly likely that if one were to record both
acquaintance patterns and geographical location for actors in a social network,
one would discover that acquaintance is strongly dependent on geography, with
people being more likely to know others who live in the same part of the world
as themselves.

5.4.1 Mixing by Vertex Degree

We will spend the rest of this article examining one particular case of mixing
according to a scalar vertex property, that of mixing by vertex degree, which
has been studied for some time in the social networks literature and has recently
attracted attention in the mathematical and physical literature also. Krapivsky
and Redner [27] for instance found in studies of the preferential attachment
model of Barabési and Albert [6] that edges did not fall between vertices in-
dependent of their degrees. Instead there was a higher probability to find some
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degree combinations at the ends of edges than others. Pastor-Satorras et al. [40]
subsequently showed for data on the structure of the Internet at the level of
autonomous systems that the degrees of adjacent vertices were anticorrelated,
i.e., that high-degree vertices prefer to attach to low-degree vertices, rather than
other high-degree ones — the network is disassortative by degree. To demonstrate
this, they measured the mean degree degree (ky,) of the nearest-neighbours of a
vertex, as a function of that vertex’s degree k. They found that (k,,) decreases
with increasing k, approximately as k~'/2. That is, the mean degree of your
neighbours goes down as yours goes up. Maslov and Sneppen [29] have offered
an explanation of this result in terms of ensembles of graphs in which double
edges between vertices are forbidden. Maslov and Sneppen also showed in a se-
parate paper [30] that the protein interaction network of the yeast S. Cerevisiae
displays a similar sort of disassortative mixing.

An alternative way to quantify assortative mixing by degree in a network is to
use an assortativity coefficient of the type described in the previous section [35].
Let us define e, to be the fraction of edges in a network that connect a vertex
of degree j to a vertex of degree k. (As before, if the ends of an edge connect
different types of vertices, then the matrix will be asymmetric, otherwise it will
be symmetric.) In fact, we define j and k to be the “excess degrees” of the two
vertices, i.e., the number of edges incident on them less the one edge that we
are looking at at present. In other words, j and k are one less than the total
degrees of the two vertices. This designation turns out to be mathematically
convenient for many developments. If the degree distribution of the network as
a whole is pg, then the distribution of the excess degree of the vertex at the end
of a randomly chosen edge is

k+1
oo = BF Dt (5.6)

where z = ), kpy, is the mean degree [37]. Then one can define the assortativity
coeflicient to be
Ik (e — qqr)
- >k k(e ik (5.7)

2
g

where o4 is the standard deviation of the distribution g. On a directed or similar
network, where the ends of an edge are not the same and e, is asymmetric, this
generalizes to

Yk dk(eir — aia)
040

: (5.8)

where o, and oy are the standard deviations of the distributions ¢f and qz for
the two types of ends. (The measure introduced by Pastor-Satorras et al. [40]
can also be expressed simply in terms of the matrix e;: it is (knn) = Zj Jejk-
Maslov and Sneppen [30 [29] gave entire plots of the raw e;j, using colours to
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Table 5.2. Size n and degree assortativity coefficient r for a number real-world net-
works. Social networks: coauthorship networks of (a) physicists and biologists [34]
and (b) mathematicians [19]; (c) collaborations (co-starring relationships) of film ac-
tors [46], B9]; (d) directors of Fortune 1000 companies for 1999, in which two directors
are connected if they sit on the board of directors of the same company [I3] [39];
(e) network of email address books of computer users [38]. Technological networks:
(f) network of direct peering relationships between autonomous systems on the Inter-
net, April 2001 [12]; (g) network of hyperlinks between pages in the World-Wide Web
domain nd.edu circa 1999 [3]; (h) network of dependencies between software packa-
ges in the GNU/Linux operating system [36]. Biological networks: (i) protein—protein
interaction network in the yeast S. Cerevisiae [22]; (j) metabolic network of the bacte-
rium E. Coli [23]; (k) neural network of the nematode worm C. Elegans [47} 46]; tropic
interactions between species in the food webs of (1) Ythan Estuary, Scotland [2T] and
(m) Little Rock Lake, Wisconsin [28]. After Newman [36]

network type size m|assortativity r|ref.
physics coauthorship undirected| 52909 0.363 a
biology coauthorship undirected|1 520 251 0.127 a
%‘3 mathematics coauthorship|undirected| 253339 0.120 b
g/film actor collaborations |undirected| 449913 0.208 c
company directors undirected 7673 0.276 d
email address books directed 16 881 0.092 e
Internet undirected| 10697 —0.189 f
Z World-Wide Web directed | 269504 —0.067 g
S|software dependencies directed 3162 —0.016 h
g|protein interactions undirected 2115 —0.156 i
E metabolic network undirected 765 —0.240 j
&lneural network directed 307 -0.226 | k
;% marine food web directed 134 —0.263 1
freshwater food web directed 92 —0.326 m

code for different values. These plots are however rather difficult to interpret by
eye.)

In Table[5.2] we show values of r measured for a variety of different real-world
networks. The networks shown are divided into social, technological and biolo-
gical networks, and a particularly striking feature of the table is that the values
of r for the social networks are all positive, indicating assortative mixing by de-
gree, while those for the technological and biological networks are all negative,
indicating disassortative mixing. It is not clear at present why this should be,
although explanations for the observed mixing behaviours have been proposed
in some specific cases [29] 136].

As with the mixing by discrete enumerative characteristics discussed in
Sect. 5.3l we can also investigate the effects of assortative mixing by looking
at computer generated networks with particular types of mixing. Unfortuna-
tely, no simple algorithm exists for generating graphs mixed by vertex degree
analogous to that of Sect. 5.3 (see Dorogovtsev et al. in this volume and New-
man [36]) and one is forced to resort to Monte Carlo generation of graphs using
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(a) ’ (b)

Fig. 5.8. The giant component of two graphs generated using a Monte Carlo procedure
with edge distribution given by (&3) with x = 10 and a p = 0.5 and b p = 0.05

Metropolis—Hasting type algorithms of the sort widely used for graph genera-
tion in mathematics and quantitative sociology. Such algorithms however are
straightforward to implement. For the present case, we take the simple example

form
ejn = Ne~ Uk K]j )p]q’“ + (‘Hk— )p’“q]} (5.9)

where p4+qg=1, k>0, and N = %(1 — e /%) is a normalizing constant. This
means that the distribution of the sum j + k of the excess degrees at the ends of
an edge falls off as a simple exponential, while that sum is distributed between
the two ends binomially, the parameter p controlling the assortative mixing. For

values of p ranging from 0 to % we get various values of the assortativity r, both
11

positive and negative, passing through zero at py = 5 — 1\/5 =0.1464. ..

As an example, we show in Fig. ERlthe giant components of two graphs of this
type generated using the Monte Carlo method. One of them, graph (a), is assor-
tatively mixed by degree, while the other, graph (b), is disassortatively mixed.
The difference between the two is clear to the eye. In the first case, because the
high degree vertices prefer to attach to one another, there is a central “core” to
the network, composed of these high-degree vertices, and a straggling periphery
of low-degree vertices around it. In epidemiology a dense central portion of this
type is called a “core group” and is thought to be capable of acting as a reservoir
for disease, keeping diseases circulating even when the density of the network
as a whole is too low to maintain endemic infection. In social network analysis
one also talks of “core/periphery” distinctions in networks, another concept that
mirrors what we see here. In the second graph, which is disassortative, a con-

trasting picture is evident: the high-degree vertices prefer not to associate with
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Fig. 5.9. The size of the giant component as a function of graph size for graphs with
the edge distribution given in (5.9)), for three different values of the parameter p, which
controls the assortativity. The points are simulation results for graphs of N = 100000
vertices while the solid lines are the analytic solution for the same quantity given by
Newman [35]. Each point is an average over ten graphs; the resulting statistical errors
are smaller than the symbols. The values of p are 0.5 (circles), po = 0.146 ... (squares),
and 0.05 (triangles)

one another, and are as a result scattered widely over the network, producing a
more uniform appearance.

To shed more light on the effects of assortativity, we show in Fig. [5.9] the
size of the largest component in networks of this type as the degree distribution
parameter k is varied, for various values of p. For low values of x the mean
degree of the network is small, and the resulting density of edges is too low
to produce percolation in the network, so there is no giant component. As k
increases, however, there comes a point, clearly visible on the plot, at which
the edge density is great enough to form a giant component. Figure .9 reveals
two interesting features of this transition. First, the position of the transition,
the value of the parameter x at which it takes place, is smaller in assortatively
mixed networks than in disassortative ones. In other words, it appears that the
presence of assortativity in the degree correlation pattern allows the network
to percolate more easily. This result is intuitively reasonable: the core group of
the assortative network seen in Fig.[5.8a has a higher density of edges than the
network as a whole and so one would expect percolation to take place in this
region before it would in a network with the same average density but no core
group.

Second, the figure shows that, even though the assortative network percolates
more easily than its disassortative counterpart, its largest component does not
grow as large as that of the disassortative network in the limit where x becomes
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large. This too can be understood in simple terms: percolation occurs more easily
when there is a core group, but is also largely confined to that core group and so
does not spread to as large a portion of the network as it would in other cases.

In epidemiological terms, one could think of these two results as indicating
that assortative networks will support the spread and persistence of a disease
more easily than disassortative ones, because they possess a core group of connec-
ted high-degree vertices. But the disease is also restricted mostly to that core
group. In a disassortative network, although percolation and hence epidemic di-
sease requires a denser network to begin with, when it does happen it will affect
a larger fraction of the network, because it is not restricted to a core group.

5.5 Conclusions

In this article we have examined two related properties of networks: commu-
nity structure and assortative mixing. We have described a new algorithm for
finding groups of tightly-knit vertices within networks — communities in our no-
menclature — which is based on the calculation of an “edge betweenness” index
for network edges. The algorithm appears to be successful at detecting known
community structure in various example networks, and we have found that many
real-world networks do indeed possess community structure to a greater or lesser
degree.

Turning to possible explanations for this structure we have suggested that
assortative mixing, the preferential association of vertices in a network with
others that are like them in some way, is one possible mechanism for community
formation. We have defined a measure of the strength of assortative mixing and
applied it, for example, to data on mixing by race in social networks, showing
that there is strong assortativity in this case, at least for the survey data that
we have examined. We have also given a simple algorithm for creating networks
with assortative mixing according to discrete characteristics imposed upon the
vertices, and used it to generate example networks which, when fed into our
community detection algorithm, reveal strong community structure similar to
that seen in the real-world data. This lends some conviction to the theory that
assortative mixing could, at least in some cases, be a contributing factor in the
formation of communities within networks.

We have also looked at assortative mixing by scalar characteristics of verti-
ces, such as the age of individuals in a social network, and particularly vertex
degree. By measuring mixing of the latter type for a variety of different networks,
we have shown that social networks appear often to be assortatively mixed by
degree, while technological and biological networks appear normally to be disas-
sortative. Using computer generated model networks we have also shown that
assortativity by vertex degree makes networks percolate more easily — they de-
velop a giant component for a lower average edge density than a similar network
with neutral or disassortative mixing. Conversely, however, disassortative net-
works tend to have larger giant components when they do develop. These findings
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have implications for epidemiology, for example: they imply that a disease sprea-
ding on a network that is assortatively mixed, as most social networks appear
to be, would reach epidemic proportions more easily than on a disassortative
network, but that an epidemic might ultimately affect fewer people than in the
disassortative case.

Looking ahead, some obvious next steps in the studies presented here are
the application of community finding algorithms to other networks, the study of
mixing patterns in other networks, and theoretical investigations of the effects
of assortative mixing and other network correlations on network structure and
function, including for instance network resilience and network epidemiology. A
number of authors have already started work on these problems [20), 48] [8, [43]
35, 136).
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6 Effect of Accelerated Growth
on Networks Dynamics

J.F.F. Mendes

Departamento de Fisica, Universidade de Aveiro, Campus Universitdario de Santiago,
3810-193 Aveiro, Portugal

Abstract. In most of real growing networks the mean number of connections per
vertex increases with time. Among the examples of large networks presenting this type
of growth are the Internet, the Word Wide Web, collaborations networks, and many
others. We call this type of growth accelerated growth. We show that the accelerated
growth influences the distribution of connections and as consequence it may determine
the structure of a network. For the growing networks with preferential linking and
increasing density of links, two scenarios are possible. In one of them, the value of the
exponent vy of the connectivity distribution P(q,t) o< ¢~ is between 3/2 and 2. In
the other the exponent is, v > 2, and the distribution is necessarily non-stationary.
We discuss the general consequences of the acceleration and demonstrate its features
applying it to simple illustrating examples. In particular, we show that the accelerated
growth fairly well explains the structure of the Word Web (the network of interacting
words of human language).

6.1 The Meaning of Acceleration in Networks

In the last recent years there has been a growing interest in the study of topologic
and dynamical properties of what has come to be known as complex networks.
Many models have been devoted to the study of real networks. Most of models
of evolving networks contain a very important assumption. In these models it is
assumed that the total number of edges of a growing network is a linear function
of its size (total number of vertices). The linear growth does not change the
average degree of the network [T} [2, B] This same is not true in the case of
accelerated growth. We present some examples of networks that belong to the
family of nets that has an acceletated growth. However, there are also examples
of real nets that do not belong to this family and also not to the linear growth
ones, is the case, for instance, of biological networks.

The first model for the growth of networks under mechanism of preferential
linking which was introduced by Barabdsi-Albert (Barabési-Albert model) [4]
(see also [5]), is only one example of a linearly growing network from a very long
list [0 (7, (8, [9], [10, 11} 12] [13]. Thus, a linear type of growth is usually supposed
to be a natural feature of growing networks. But let us ask ourselves, whether
this very particular case, that is, the linear growth is or not so widespread in
real networks. To answer this question we must look at existing empirical data.
In any case we will consider these problems using general arguments. Assuming

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 88-113, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Fig. 6.1. The WWW is a directed graph. In this schematic picture we show its struc-
ture when the strongly connected component (GSCC) is present. The other, also giant
components, are the giant out- and in-component, respectively GOUT and GIN and
giant weekly connected component (GWCC)....

that the network is scale-free, we will describe the possible degree distributions
and show , in this case, that the total number of links is a power-law function of
the network size. Let us present results of some of the most well known networks.

(i) The World Wide Web:

The WWW consists of a set of documents (pages) plus hyper-links between them.
The WWW contrarily to the Internet (that will be presented below) is a direc-
ted network. Although hyper-links are directed, pairs of counter-links, in princi-
ple, may produce undirected connections. Links inside pages (self-references) are
usually not considered as edges of the WWW, so this network does not contain
“tadpoles” (closed one-edge loops). Figure 5.1 shows in a schematic form the
structure of a directed graph and all his components (for a detailed description,
see [B]).

According to [14], in May of 1999, and using data from Altavista, the WWW
consisted of 203 x 10° vertices (URLs, i.e., pages) and 1466 x 10° hyper-links.
So, the average in- and out- degree were k; = k, = 7.22. It is possible to found
values for the WWW size for other times. We summarise some known ones on
Table

The average in- and out-degrees are equal to each other, since all the connec-
tions are inside the WWW. (Notice that the “physical” time is unimportant for
us, so that, in principle, we might not mention any date.)

Table 6.1. Known values of the size of WWW at different times

date Nrodes Niinks ‘ E

May 99 203 x 10° 1466 x 10° 7.22
Oct 99 271 x 10° 2130 x 10° 7.85
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As we can see from the Table[6.1] the average degree of the WWW is increa-
sing.

(ii) The Internet:

Roughly speaking, the Internet (support of the WWW) is a set of vertices, linked
by wires. The vertices of the Internet are hosts (computers of users), servers
(computers or programs providing a network service that also may be hosts),
and routers that arrange traffic across the Internet. Connections are naturally
undirected (an undirected network, the physical connection (wires) can transport
information in both sides). In January of 2001, the Internet contained already
about 100 millions hosts. One should emphasize, that it is not the hosts that
determine the structure of the Internet, but rather, routers and domains. In
July of 2000, there were about 150000 routers in the Internet [I5]. Later, the
number rose to 228 265 (data from [I7]). Thus, one can consider the topology of
the Internet on a router level or inter-domain topology [I8]. In the latter case
(inter-domain level), it is actually a small network not allowing to make a good
analysis (see Table B.2)).

The last data of [1§] are for December of 1998. However, one may use more
recent data on “autonomous systems”. Extensive data on connections of ope-
rating “autonomous systems” (AS) in the Internet are being collected by the
National Laboratory for Applied Network Research (NLANR). For nearly each
day, starting from November of 1997, NLANR has a map of connections of AS.
These maps are closely related to the Internet graph on the inter-domain level.
Statistical analysis of these data was made in [19] 20]. The data were averaged,
and for 1997 the average degree 3.42 was obtained; in 1998, the average degree
was 3.65; in 1999, k = 3.76. Again we see that the average degree of the Internet
on the inter-domain level (more rigorously speaking, on the AS level) is increa-
sing. One should add that the growth of the average degree of the net of AS was
also indicated in [21]. Table 5.2 summarises some of the known values for the
Internet size on time.

It is clear that the average degree of the Internet on the inter-domain level
is increasing in time.

Table 6.2. Known values of the Internet size (inter-domain level) at different times

Nlinks E

date ‘ Nrodes

Nov 97 | 3015 5156 | 3.42
Apr 98 | 3530 6432 | 3.64
Dec 98 | 4389 8256 | 3.76
Dec 99 | 6374 | 13641 | 4.28
Sep 01 | 11927 | 27492 | 4.61
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(iii) Collaboration Networks:

Roughly speaking a collaboration network consists of a set of vertices and links,
where vertices are collaborators and a pair of vertices is connected together by an
undirected edge if there is at least one act of collaboration between them [4, [24].
For example, in scientific collaboration networks (networks of coauthorships),
vertices are authors, and edges are coauthorships [25]. Another example, are all
Hollywood movies; if we assign a node to each actor and connect two nodes if
the corresponding actors have worked together in one or more movies, we ob-
tain a collaboration network. Such networks are projections of more complex
and informative bipartite graphs, which contain two types of vertices: collabo-
rators and acts of collaboration. Each collaborator is connected to all the acts
of collaboration, in which he was involved.

Empirical data of [26] 28] for large scientific collaboration networks indicate
the linear growth of their average degree with the increasing number of their
vertices. This means that the total number of edges in a network increases as a
square of the total number of vertices.

Thus we see that the accelerated growth of networks is not an exception but
rather a rule. On the contrary, the linear growth is a simple but very particular
case.

6.2 Degree Distributions

6.2.1 What Types of Degree Distribution Can We Have?

We focus here our attention on the simplest degree distributions of networks,
P(k). Most of empirical results are obtained for this simple characteristic. Un-
fortunately, the degree distribution (in-, out-degree distribution) is a restricted
characteristic of networks. Indeed, degree is a one-vertex quantity, so that, in ge-
neral, degree distribution does not yield information about the global topology
of a network. For a more detailed understanding one should find correlations
between nodes.

In most of cases, for example, for growing networks, in which correlati-
ons between degrees of vertices are strong [IT} 19} [20], a degree distribution
is only the tip of the iceberg. The Internet corresponds to one such exam-
ple. Basically its correlations arise because of its hierarchical structure. As a
consequence, vertices with high degrees are expected to be connected to ver-
tices with small degrees. Of course, if degree-degree correlations in a network
are absent, then, knowing the degree distribution of a network, one can com-
pletely characterize the net . We face this situation in many equilibrium net-
works.

Furthermore, analytical results on percolation on networks [31] [32], disease
spread within them [34] B5], etc. were obtained just for a simple construction
without degree-degree correlations. This construction is a standard model of
a maximally random graph with an arbitrary degree distribution taken from
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mathematical graph theory (“random graphs with restricted degree sequen-
ces”) [B6]. Luckily, it seems that main percolation and disease spread results
that was obtained for equilibrium networks are still valid for non-equilibrium
nets.

So we can ask, what kinds of degree distributions can be observed in net-
works? Here we list the main types with some simple examples of the correspon-
ding networks.

(a) Poisson degree distribution: P(k) = e"%k/k‘! (see Fig. 6.2h)

The Poisson distribution is realized in a classical random equilibrium graph of
Erdos and Rényi [37] [38] in the limit of the infinite network, that is, when the
total number of vertices IV is infinite. Pairs of randomly chosen vertices are
connected by edges. One may create at random L edges in the graph, or connect
pairs of vertices with the probability L/[N(N — 1)/2]. In both these cases, the
resulting graph is the same in the limit N — oc.

log P(k) log P(k)
a) b)

log k log k
log P(k) 0) log P(k) d)

logk log k
log P(k)

|
log k

Fig. 6.2. “Zoology” of degree distributions in networks. Main types of a degree dis-
tribution in log-log plots. a Poisson, b exponential, ¢ power-law, d multifractal, and
e discrete distributions
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(b) Exponential degree distribution: P(k) ~ exp(—k/const) (see Fig.[6.2b)
A citation graphEl with attachment of new vertices to randomly chosen old ones
produces the exponential distribution, but this is only one possible example.
(Let each new vertex have the same number of connections, that is, the growth
is linear.)

Also, the exponential degree distribution is rather usual for many equilibrium
networks that are constructed by mechanism of preferential linking.

(c) Power-law degree distribution: P(k) ~ k=7 (see Fig. [6.2k)

Here the standard example is the Barabdsi-Albert model [4] (see also [5]). This
growing network is a linearly growing citation graph in that new vertices are
attached to preferentially chosen old ones. “Popular” old vertices attract more
new connections than “failures”: “popularity is attractive”. This is a quite general
principle. For example, this one is incorporated in the Simon model [39, 40]. In
the Barabdsi-Albert model, the probability that an edge becomes attached to
some vertex is proportional to the degree k of this vertex. This yields v = 3.
If the probability is proportional to k + const (a linear preference function), ~y
takes values between 2 and oo as the constant changes from —1 to oo [7].

Power-law distributions are usually called scale-free or fractal.

(d) Multifractal degree distributions (see Fig. [6.2k)

This distribution has a continuum spectrum of power laws with different weights.
The growth of a network may produce such a degree distribution if new vertices
partially copy degrees of old ones [41]. In particular, multifractal degree distri-
butions emerge in some models of networks of protein-protein interactions [42].
Multifractal distributions is a more general case of a fat-tailed distribution than
power-law distributions. Numerous empirical data were fitted by a power-law
dependence. However, there were no attempts to check the possibility that at
least some of empirical degree distribution are multifractal.

(e) Discrete degree distributions (see Fig. G.2d)

Deterministic growing graphs have a discrete spectrum of degrees. Recently, it
was demonstrated that some simple rules of deterministic growth may produce
discrete degree distributions with a power-law decay [43]. Moreover, determi-
nistic graphs from [3] [44] [45] have an average shortest-path length, which is
proportional to the logarithm of their size. Figure [6.3] shows a simple determini-
stic graph [3| [44] with the discrete degree distribution that is characterized by
exponent y =14 1n3/1In2.

6.2.2 The Most Interesting Case: Power-Law Degree Distribution

Power-law (that is, “scale-free”) degree distributions is a prominent particular
case of fat-tailed degree distributions, which are widespread in real networks

L In the citation graph nodes are papers and links are the citations to previously
published papers. It is a growing graph in which new links do not emerge between
pairs of old nodes.
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Fig. 6.3. A simple deterministic graph with a power-law discrete degree distribution.
The growth starts from a single edge between two vertices. At each time step, each edge
of the graph generates a new vertex, which became attached to both the end vertices of
the mother edge. The average shortest-path length of this graph grows logarithmically
with the total number of vertices

(both natural and artificial) [4, [5, 24]. Let us discuss briefly the general features
of power-law distributions.

One may ask, what values can the exponent v take? To answer this question
one should impose the natural restriction that follows from the normalization
condition [dkP(k) = 1 (in this discussion we change the corresponding sum
to the integral). We may not be worried about the low-degree region, since
the degree distribution is certainly restricted below some characteristic degree
ko. Only the large degree behavior of the degree distribution is interesting for
us. Therefore, from this condition we get that v > 1, otherwise the integral is
divergent.

If a network grows linearly, so the first moment of the distribution (the
average degree k), is independent of time, then we have a second restriction
[ dkkP(k) < oo which implies that v > 2 for linearly growing networks.

The finite size effect cuts the power-law part of the degree distribution at
large degrees. This produces size-dependent degree distributions. One may easily
estimate the position of the cutoff k., in the situation where v > 2. Let the total
number of vertices in the net be ¢, and ko be some characteristic degree, below
which the distribution is, for example, constant or even zero. Then, using the
normalization f dkP(k) =1 gives the power-law part of the degree distribution
of the form P(k) ~ [(y — 1)k~ '1k™7 for ko < k < Eeur.

When one measures the degree distribution of a network using only one
realization of the growth process, strong fluctuations are observed at degree k¢(t)
that is determined by the condition ¢P(ky(t)) ~ 1. This means that only one
vertex in the network has such degree. (More rigorously speaking, the number of
such vertices is of the order of one.) This is the first natural scale of the degree
distribution.

One may improve the statistics by measuring many realizations of the
growth process, or, for example, by passing to the cumulative distribution
Poum(k) = [.° dk P(k). Both these tricks allow us to reduce the above fluc-
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Fig. 6.4. The typical form of a power-law degree distribution of finite growing net-
works. The finite-size cutoff is given by (6.1). The hump near the cutoff depends on
initial conditions (we do not account for the factor of mortality)

tuations. However, we still cannot surpass the next threshold that is originated
from the second natural scale, keys: tPeym (kewt(t)) ~ 1. This means that only
one vertex in the network is of degree greater than k.,;. (Again, more rigorously,
the number of such vertices is of the order of one.) Using the above expression
for P(k) gives

Eeut ~ ko tV/07Y (6.1)

Notice that the only reason for this estimate for the cutoff is the natural scale
of the problem. Hence more convincing arguments are necessary. The estimate
was checked for some specific models. A growing network [13] was solved exac-
tly, and the exact position of the cutoff have coincided with (E.I]). The degree
distribution of this network has a typical form (see Fig. £.4]). Notice a hump
near ke,; in Fig. This is a trace of initial conditions. Simulation of a scale-
free equilibrium network [46] also yielded the cutoff at this point. However, t