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1 Introduction

Statistical physics has faced for long time the challenge to describe and under-
stand large complex systems composed by a heterogeneous set of elements that
interact mainly via non-local interactions. In this sense, while the study of their
homogeneous counterparts with local interactions has resulted in most signifi-
cative achievements (consider for example the theory of critical phenomena),
heterogeneous systems have usually been the subject of much less attention, due
to the intrinsic difficulty that their analytical treatment implies.

Last years have witnessed, however, a renewed interest in the physics of
this kind of heterogenous systems, interest born with the realization that they
can be mapped into networks, in which the vertices represent the elements and
the edges pairwise interactions between elements. This new approach – which
finds its roots in the mathematical realm of graph theory – has allowed a first
understanding of these systems in terms of complex networks, focusing in the
study of their topology. While it represents just a first approximation, missing
many microscopic properties, this analysis is still able to provide a great deal of
information about their topological structure, which has important consequences
on the properties of dynamical processes taking place on top of them.

At first instance, the recent availability of powerful computers has lead to
a large amount of empirical studies of many real networks. The result of these
efforts has been the reconstruction of graph representations of many real tech-
nological, social, and biological networks. The statistical analysis of these maps
has unveiled the general presence of a very complex and heterogeneous topo-
logy, characterized by statistical fluctuations that extend over many orders of
magnitude. The main manifestation of this fluctuations is found in the the de-
gree distribution (the probability distribution of the number of connections of
any vertex), that in most cases exhibits a power-law behavior, lacking any cha-
racteristic length scale, and that has led to the definition of the class of scale-free
networks.

The large scale fluctuations observed in real networks are the typical sig-
nature of emergent phenomena, as observed in many complex systems subject
to a dynamical evolution. When considering networks from the perspective of
complex systems, the attention is placed in the microscopic rules that govern the
dynamics of vertices and edges. Since networks are composed by a large number
of interacting elements, the detailed characterization of the dynamics of each
element is neglected, focusing instead in the understanding of the cooperative
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2 1 Introduction

phenomena the emerge from their interactions and the statistical laws governing
the system. Such approach is analogous to the statistical physics methodology,
that has been proved extremely successful in order to link the microscopic dy-
namics and interactions of matter to the statistical regularities of macroscopic
physical systems.

Pursuing this approach, a large amount of research activity has been recently
devoted to apply the statistical physics methodology to the study of growing
complex networks. In the statistical physics framework, complex networks are
viewed as growing systems that evolve in time by adding and removing vertices
and edges. This perspective, opposite to the traditional static graph modeling
that is at the core of the classical graph theory, allows the identification of some
basic models that, while still missing many details, appear to outline the gene-
ral dynamical theory required to describe the macroscopic properties of natural
complex networks. The introduction of the statistical physics approach to the
study of complex networks has also provided new techniques and methods to
consider the effect of the network topology on different dynamical processes
taking place on top of the networks, such as the resilience to damage, and diffu-
sion or searching processes. In this case, well established techniques in statistical
physics, such as percolation theory, mean-field methods, or cellular automata
simulations, have been fruitfully used to gain a deeper understanding of the
general properties of complex networks.

Motivated by the previous considerations, we gathered several leading ex-
perts in the field of complex networks for the XVIII Sitges Conference. This
book contains a number of selected contributions that will give the reader a
general overview of the most recent developments concerning the application of
the new theory of complex networks in fields as diverse as physics, biology, and
sociology. Among the various aspects covered by the different contributions, we
can mention the description of analytical tools to characterize network models,
the description of hierarchies and correlations in real complex networks, and the
study of dynamical processes such as percolation, searching, or epidemics.

In view of the successes accomplished, and the vast array of new theoretical
and practical applications that complex networks offer for the future, we can
expect that their study will become a major area of work in the statistical
mechanics of the 21st century. We hope that this book will represent a useful
introduction to some of the most recent and interesting topics of this emerging
field.



2 Rate Equation Approach for Growing
Networks

P.L. Krapivsky and S. Redner

Center for BioDynamics, Center for Polymer Studies and Department of Physics,
Boston University, Boston MA 02215, USA

Abstract. The rate equations are applied to investigate the structure of growing net-
works. Within this framework, the degree distribution of a network in which nodes are
introduced sequentially and attach to an earlier node of degree k with rate Ak ∼ kγ

is computed. Very different behaviors arise for γ < 1, γ = 1, and γ > 1. The rate
equation approach is extended to determine the joint order-degree distribution, the de-
gree correlations of neighboring nodes, as well as basic global properties. The complete
solution for the degree distribution of a finite-size network is outlined. Some unusual
properties associated with the most popular node are discussed; these follow simply
from the order-degree distribution. Finally, a toy protein interaction network model is
investigated, where the network grows by the processes of node duplication and par-
ticular form of random mutations. This system exhibits an infinite-order percolation
transition, giant sample-specific fluctuations, and a non-universal degree distribution.

2.1 Introduction

In this contribution, we apply tools from statistical physics, in particular, the rate
equations, to quantify geometrical properties of evolving networks [1]. The utility
of the rate equations have been amply demonstrated for diverse non-equilibrium
phenomena, such as aggregation [2], coarsening [3], and epitaxial surface growth
[4]. We will argue that the rate equations are a similarly powerful yet simple
tool to analyze growing network systems. In addition to providing comprehensive
information about the node degree distribution, the rate equations can be readily
adapted to treat the joint order-degree distribution, correlations between node
degrees, global properties, and a variety of intriguing fluctuation effects.

We will focus on two classes of models. In the first, which we simply term the
growing network, nodes are added sequentially and a single link is established
between the new node and a pre-existing node according to an attachment rate
Ak that depends only on the degree of the “target” node (Fig. 2.1). Here node
degree is the number of links that impinge on the node. This appealing mo-
del, first introduced by Simon [5] and rediscovered by Barabási and Albert [6],
has become extremely fashionable because of its rich phenomenology and timely
applications. Examples include the distribution of biological genera, word fre-
quencies, publications, urban populations, income [5, 7], and the link distribution
of the world-wide web [8, 9, 10].
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4 P.L. Krapivsky and S. Redner

a b

Fig. 2.1. a Growing network. Nodes are added sequentially and a single link joins
a new node to an earlier node. Node 1 has degree 5, node 2 has degree 3, nodes 4
and 6 have degree 2, and the remaining nodes have degree 1. b Protein interaction
network. The new node duplicates 2 out of the 3 links between the target (shaded)
and its neighbors. Each successful duplication occurs with probability 1−δ (thick solid
lines). The new node also attaches to any other node with probability β/N (heavy
dotted lines). Thus three previously disconnected clusters are joined by the complete
event

The second class of models are inspired by protein interaction networks,
where the nodes are individual proteins and the links represent a functional
relationship between two proteins in an organism. Much effort has been devoted
to infer the structure of such networks [11, 12, 13] and to formulate models
that account for their evolution [14, 15, 16, 17, 18, 19]. In the model discussed
here [17, 18], nodes are added sequentially and the new node may “duplicate”
a randomly chosen target, and the new node can link to any other node with
with a small probability (Fig. 2.1). In the duplication step, the new node links
to each of the neighbors of the target with probability 1 − δ. Thus the duplicate
protein is functionally similar to the original [14]. The second process can be
viewed as mutation in which a protein can becomes functionally linked to a
random subset of other proteins. By this latter process, an arbitrary number
of clusters can merge when a single node is introduced. As we shall discuss,
this many-body merging leads to an infinite-order percolation transition as a
function of the mutation rate. While the applicability of this model to describe
real protein networks is still not settled [14], it is a useful starting point for
theoretical analysis.

Our basic goal is to quantify the structure of these two basic networks by the
rate equation approach.

2.2 Structure of the Growing Network

2.2.1 The Degree Distribution

A fundamental characteristic of any random network is the node degree distri-
bution Nk(N), defined as the number of nodes with k links in a network that
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contains N total nodes. To determine this distribution, we write the rate equati-
ons that account for its evolution after each node is introduced. For the growth
process in Fig. 2.1a, these rate equations are [20, 21, 22]

dNk
dN

=
Ak−1Nk−1 −AkNk

A
+ δk1. (2.1)

The first term on the right, Ak−1Nk−1/A, accounts for processes in which a node
with k− 1 links is connected to the new node, thus increasing Nk by one. Since
there are Nk−1 nodes of degree k−1, such processes occur at a rate proportional
to Ak−1Nk−1, while the factor A(N) =

∑
j≥1AjNj(N) converts this rate into

a normalized probability. A corresponding role is played by the second (loss)
term on the right-hand side. Here AkNk/A is the probability that a node with k
links is connected to the new node, thus leading to a loss in Nk. The last term
accounts for the introduction of a new node with degree one.

Let us first determine the moments of the degree distribution, Mn(N) =∑
j≥1 j

nNj(N). Summing (2.1) over all k, gives Ṁ0(N) = 1. This accords with
the definition that M0(N) =

∑
kNk is just the total number of nodes N in the

network. Similarly, the first moment obeys Ṁ1(N) = 2, orM1(N) = M1(0)+2N .
Clearly this quantity must grow as 2N , since introducing a single node creates
two link endpoints. Thus the first two moments are independent of the attach-
ment kernel Ak and grow linearly in N . On the other hand, higher moments and
the degree distribution itself depend in an essential way on Ak.

For general attachment kernels that do not grow faster than linearly with
k, it can be easily verified that the asymptotic degree distribution and A(N)
both grow linearly with N . Thus substituting Nk(N) = N nk and A(N) = µN
into (2.1) we obtain the recursion relation nk = nk−1Ak−1/(µ + Ak) and n1 =
µ/(µ+A1). Solving for nk, we obtain the formal solution

nk =
µ

Ak

k∏

j=1

(

1 +
µ

Aj

)−1

. (2.2)

To complete this solution, we need the amplitude µ. Using the definition µ =∑
j≥1Ajnj in (2.2), we obtain the implicit relation

∞∑

k=1

k∏

j=1

(

1 +
µ

Aj

)−1

= 1 (2.3)

which shows that the amplitude µ depends on the entire attachment kernel.
For the generic case Ak ∼ kγ , we rewrite the product in (2.2) as the expo-

nential of a sum of logarithms. In the continuum limit, we convert this sum to
an integral, expand the logarithm to lowest order, and evaluate the integral to
yield:

nk ∼






k−γ exp
[
−µ

(
k1−γ−21−γ

1−γ
)]
, 0 ≤ γ < 1;

k−ν , ν = 1 + µ > 2, γ = 1;
singular γ > 1.

(2.4)
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That is, for all 0 < γ < 1, the degree distribution is a robust stretched expo-
nential (and pure exponential for γ = 0). Conversely, for γ > 1 a phenomenon
analogous to gelation occurs in which a single node has almost all of the network
links [20, 22]. The regime γ > 1 actually has an infinite sequence of transitions.
For γ > 2 all but a finite number of nodes (in an infinite network) are linked to
the “gel” node which has the rest of the links of the network. For 3/2 < γ < 2,
the number of nodes with two links grows as N2−γ , while the number of nodes
with more than two links is again finite. For 4/3 < γ < 3/2, the number of
nodes with three links grows as N3−2γ and the number with more than three
is finite. Generally for (m+ 1)/m < γ < m/(m− 1), the number of nodes with
more than m links is finite, while Nk ∼ Nk−(k−1)γ for k ≤ m.

The linear kernel (γ = 1) is on the boundary between these two generic beha-
viors and leads to a degree distribution that depends on details of the attachment
rate. In fact, the exponent ν = 1+µ can be tuned to any value larger than 2 [22].
In the special case of the strictly linear kernel, Ak = k, the degree distribution
has the simple form

nk =
4

k(k + 1)(k + 2)
∝ k−3. (2.5)

To illustrate the vagaries of asymptotically linear kernels, consider the shifted
linear kernel Ak = k + λ. For this case, note that A(N) =

∑
j AjNj(N) gives

A(N) = M1(N) + λM0(N). Using A = µN , M0 = N and M1 = 2N , we get
µ = 2 + λ. Hence ν = 1 + µ = 3 + λ. Thus an additive shift in the attachment
kernel profoundly affects the asymptotic degree distribution. From (2.2), the
degree distribution is

nk = (2 + λ)
Γ (3 + 2λ)
Γ (1 + λ)

Γ (k + λ)
Γ (k + 3 + 2λ)

∝ k−(3+λ). (2.6)

Finally, we discuss a simple extension in which a newly-introduced node
links to exactly p earlier nodes [6]. For the linear attachment kernel, the degree
distribution Nk(N) (now defined only for k ≥ p) obeys the rate equation

dNk
dN

=
p

M1
[(k − 1)Nk−1 − kNk] + δk,p. (2.7)

Following the basic approach outlined after (2.3), we find that the asymptotic
degree distribution, nk = Nk/N , is [22]

nk =
2p(p+ 1)

k(k + 1)(k + 2)
for k ≥ p. (2.8)

Thus for the strictly linear attachment kernel, the number p of links introduced
at each node creation event does not affect the exponent of the degree distri-
bution. Generally, however, this multiple link construction affects the degree
distribution. For example, for the shifted linear kernel, we find
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nk = const.× Γ (k + λ)
Γ (k + 3 + λ+ λ/p)

for k ≥ p,

np =
(

1 + p
p+ λ

2p+ λ

)−1

, (2.9)

whose asymptotic behavior is nk ∼ k−(3+λ/p). Thus the degree distribution ex-
ponent depends strongly on p. This result again shows that fine details of the
growth process can be vitally important when the attachment rate is asympto-
tically linear.

2.2.2 Order Distribution

In addition to node degree, we further characterize a node according to its or-
der of introduction by associating an order index J to the J th node that was
introduced into the network [22, 23]. Let Nk(N, J) be the probability that the
J th node has degree k when the network has N total nodes. The original degree
distribution may be recovered from this joint order-degree distribution through
Nk(N) =

∑N
J=1 Nk(N, J). The joint distribution evolves according to the rate

equation
(

∂

∂N
− ∂

∂J

)

Nk =
Ak−1Nk−1 −AkNk

A
+ δk1δ(N − J). (2.10)

The second term on the left account for the order index evolution. We assume
that the probability of linking to a given node depends only on its degree and
not on its order.

The homogeneous form of this equation suggests that the solution should
depend on the single variable x ≡ J/N . Writing Nk(N, J) = fk(x), converts
(2.10) into an ordinary, and readily soluble, differential equation [22]. For the
two generic cases of Ak = k and Ak = 1, the order-degree distributions are:

Nk(N, J) =






√
J
N

(
1 −

√
J
N

)k−1
Ak = k,

J

N

[ln(N/J)]k−1

(k − 1)!
Ak = 1.

(2.11)

For the average order index 〈Jk〉 =
∑
k J Nk(N, J)/Nk(N) of a node of degree

k, we find

〈Jk〉
N

=






12
(k + 3)(k + 4)

Ak = k,

(2/3)k Ak = 1.

(2.12)

Similarly, the average degree 〈kJ〉 =
∑
k kNk(N, J) of a node of order index J

is
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〈kJ〉 =






(J/N)−1/2 Ak = k,

ln(N/J) + 1 Ak = 1.
(2.13)

The main messages from these results are that for Ak = k, high degree nodes
must have been introduced early in the network development. Conversely, for
the case of random attachment, Ak = 1, high degree nodes could also have
been introduced relatively late in the network history. This difference plays a
crucial role in determining the properties of the node with the highest degree
(Sect. 2.3.2).

2.2.3 Degree Correlations

The rate equation approach also allows us to obtain degree correlations between
connected nodes [22]. These develop because a node with large degree is likely
to be old [22, 24, 25, 26]. Thus its ancestor is also old and hence has a large
degree. To quantify these degree correlations, define Ckl(N) as the number of
nodes of degree k that attach to an ancestor node of degree l (Fig. 2.2a). For
example, in the network of Fig. 2.1, there are N1 = 6 nodes of degree 1, with
C12 = C13 = C15 = 2. There are also N2 = 2 nodes of degree 2, with C25 = 2,
and N3 = 1 nodes of degree 3, with C35 = 1.

For simplicity, we consider the linear attachment kernel for which the degree
correlation Ckl(N) evolves according to

M1
dCkl
dN

= (k−1)Ck−1,l − kCkl + (l−1)Ck,l−1 − lCkl + (l−1)Cl−1 δk1.(2.14)

The processes that gives rise to each term in this equation are illustrated in
Fig. 2.3. The first two terms on the right account for the change in Ckl due to
the addition of a link onto a node of degree k− 1 (gain) or k (loss) respectively,
while the second set of terms gives the change in Ckl due to the addition of a link
onto the ancestor node. Finally, the last term accounts for the gain in C1l due to
the addition of a new node. A crucial feature of this equation is that it is closed;
the 2-particle correlation function does not depend on 3-particle quantities.

As in the case of the node degree, the N dependence is simply Ckl = Nckl.
This reduces (2.14) to an N -independent recursion relation. While the details of
the solution are unwieldy [22], the asymptotic solution is relatively simple in the
scaling regime, k → ∞ and l → ∞ with y = l/k finite:

ckl = k−4 4y(y + 4)
(1 + y)4

. (2.15)

k l

Fig. 2.2. Definition of the node degree correlation Ckl for k = 3 and l = 4



2 Rate Equation Approach for Growing Networks 9

(i) (ii) (iii) (iv) (v)

Fig. 2.3. Processes that contribute ((i)–(v) in order) to the terms in the rate equation
(2.14) for the case k = 3 and l = 4 ((i)–(iv)). The newly-introduced node and link are
shown dashed. The last case (v) arises only for k = 1

For fixed large k, the distribution ckl has a maximum at y∗ = (
√

33 − 5)/2 ∼=
0.372. Thus a node of degree k is typically attached to an ancestor node whose
degree is 37% that of the daughter node. In general, when k and l are both large
and their ratio is different from one, the limiting behaviors of ckl are

ckl →
{

16 (l/k5) l � k,

4/(k2 l2) l � k.
(2.16)

Here we explicitly see the absence of factorization in the degree correlation:
ckl = nknl ∝ (k l)−3.

2.2.4 Global Properties

The rate equations can be adapted to determine the in-component and out-
component of the network with respect to a given node x [22]. The former is just
the set of nodes that point to the node, plus all nodes that refer these daughter
nodes, etc. The latter are the set of nodes that can be reached by following
directed links that emanate from x (Fig. 2.4). We study the distribution of these
component sizes for the constant attachment kernel, Ak = 1, because many
results about components are independent of the form of the kernel and thus it
suffices to consider the simplest situation.

in-component

x
out-component

Fig. 2.4. In-component and out-components of node x
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The In-Component

The number of in-components with s nodes, Is(N), satisfies the rate equation

dIs
dN

=
(s− 1)Is−1 − sIs

A
+ δs1. (2.17)

Here the loss term accounts for processes in which the attachment of a new node
to an in-component of size s increases its size by one. This gives a loss rate
proportional to s. If there is more than one in-component of size s they must be
disjoint, so that the total loss rate for Is(N) is simply sIs(N). A similar argument
applies for the gain term. Dividing by A(N) =

∑
j AjNj(N) converts these rates

to probabilities, where A(N) = M0(N) ∼ N for the constant attachment kernel.
It is again easy to verify that each Is grows linearly in N . Thus we substitute

Is(N) = N is into (2.17) to obtain is = is−1(s − 1)/(s + 1) and i1 = 1/2. This
immediately gives

is =
1

s(s+ 1)
. (2.18)

The s−2 tail for the in-component distribution is independent of the form of the
attachment kernel [22]. The exponent value also agrees with recent measurements
of the web [10].

The Out-Component

The complementary out-component (Fig. 2.4) from each node can be determined
by mapping the out-component to an underlying network “genealogy”. We build
a genealogical tree for the growing network by taking generation g = 0 to be
the initial node. Nodes that attach to those in generation g are defined to form
generation g + 1; the node index does not matter in this characterization. For
example, in the network of Fig. 2.1a, node 1 is the ancestor of 6, while 10 is the
descendant of 6; there are 5 nodes in generation g = 1 and 4 in g = 2 (Fig. 2.5).

The genealogical tree is convenient because the number Os of out-components
with s nodes equals Ls−1, the number of nodes in generation s − 1 in the tree

1

62 8 94

3 7 5 10

g=0

2

1

Fig. 2.5. Genealogy of the network in Fig. 2.1a. The nodes indices indicate when each
is introduced. The nodes are also arranged according to generation number
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(Fig. 2.5). We therefore compute Lg(N), the size of generation g when the net-
work has N total nodes. We again treat the constant attachment kernel; more
general cases are treated in [22]. We determine Lg(N) by noting that Lg(N)
increases when a new node attaches to a node in generation g − 1. This oc-
curs with rate Lg−1/M0, where M0(N) = 1 + N is the number of nodes. Thus
L̇g(N) = Lg−1/(1+N), with solution Lg(τ) = τg/g!, where τ = ln(1+N). Thus

Os(τ) = τ s−1/(s− 1)!. (2.19)

The generation size Lg(N) rapidly grows with g for g < τ , and then decreases
and becomes of order 1 when g = e τ . To accommodate a network of N nodes,
the genealogical tree uses approximately eτ generations. Therefore the network
diameter is 2eτ ≈ 2e lnN , since the maximum distance between any pair of
nodes is twice the distance from the root to the last generation.

2.3 Finiteness, Fluctuations, and Extremes

2.3.1 Role of Finiteness

Thus far, we have focused on asymptotic properties when the number of nodes
is sufficiently large that the ansatz Nk = N nk is valid. We now consider the role
of finiteness on growing networks with attachment rate Ak = k + λ (λ > −1)
[27, 28]. This interpolates between linear attachment (for λ = 0) to random
attachment, Ak = 1 (for λ → ∞).

As quoted in (2.6), the degree distribution of a network with N � 1 nodes
is Nk(N) ∝ Nk−(3+w) for attachment rate Ak = k + λ. However, for finite N
the degree distribution must eventually deviate from this prediction because the
maximal degree cannot exceed N . To establish the range of applicability of (2.6),
we estimate the largest degree in the network, kmax by the extreme statistics
criterion

∑
k≥kmax

Nk(N) ≈ 1 [29]. This yields kmax ∝ N1/(2+λ). The degree
distribution should therefore deviate from (2.6) when k becomes of the order of
kmax. The existence of a maximal degree suggests that the degree distribution
should have the finite-size scaling form (see also [27, 28, 30, 31, 32])

Nk(N) � NnkF (ξ), ξ = k/kmax. (2.20)

To determine the finite-N behavior of the network, we start by writing the
exact recursion relation for the degree distribution after a single node is added:

Nk(N + 1) = Nk(N) +
(k − 1)Nk−1(N) − kNk(N)

2N
. (2.21)

To solve this recursion we introduce the two-variable generating function [28]

N (w, z) =
∞∑

N=1

∞∑

k=1

Nk(N)wN−1 zk ,
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Fig. 2.6. a Normalized degree distribution for networks of 102, 103, . . . , 106 nodes
(upper left to lower right), with 105 realizations for each N , for Ak = k for a “triangle”
initial condition. The dashed line is the asymptotic result nk = 4/[k(k + 1)(k + 2)];
the last three data sets were averaged over 3, 9, and 27 points, respectively. b The
corresponding scaling function as defined in F (ξ) in (2.20) from simulation data of 106

realizations of a network with N = 104 nodes for the “dimer” initial condition (circles).
The solid curve (red) is the analytical result of (2.24)

to transform (2.21) into
(

2(1 − w)
∂

∂w
+ z(1 − z)

∂

∂z
− 2

)

N =
2z

(1 − w)2
. (2.22)

The exact solution to this equation can be obtained by standard methods and
has the unwieldy form [28],

N (w, z) =
(3 − 2z−1)
(1 − w)2

− 1
1 − w

+
2(z−1 − 1)
(1 − w)3/2

+
2(1 − w)−1/2

(z−1 − 1) + (1 − w)1/2

−2(z−1 − 1)2

(1 − w)2
ln
[
1 − z + z(1 − w)1/2

]
. (2.23)

By expanding N (w, z), we can determine all the Nk(N). By this approach, we
find that the scaling function defined in (2.20) is

F (ξ) = erfc
(
ξ

2

)

+
2ξ + ξ3√

4π
e−ξ2/4 , (2.24)

where erfc(x) is the complementary error function. A related result was found
previously in [27]. This scaling function quantitatively accounts for the large-
degree tail of the degree distribution (Fig. 2.6b).
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2.3.2 Extremes and Lead Changes

We now investigate properties associated with the statistics of the node with
the largest degree – the most popular node [33]; see also [34]. The degree of this
node can be determined by a simple extreme statistics argument [29, 33, 34].
Here we discuss related, socially-motivated questions of the identity of the most
popular node (the leader). These include the dependence of the leader identity
on network size, the rate at which lead changes occur, and the probability that
a leader retains the lead as a function of network size.

Leader Identity

We first determine the order index of the leader node. To start with an unambi-
guous leader, we initialize the system with 3 nodes, with the initial leader having
degree 2 (and index 1) and the other two nodes having degree 1. A new leader
arises when its degree exceeds that of the current leader. For the linear attach-
ment rate, Ak = k, the average order index of the leader Jlead(N) saturates to a
finite value of approximately 3.4 as N → ∞ (Fig. 2.7a). With probability ≈ 0.9,
the leader is one of the 10 earliest nodes, while the probability that the leader is
not among the 30 earliest nodes is less than 0.01. Thus only the earliest nodes
have appreciable probabilities to be the leader; the rich really do get richer. In
the case of Ak = k+ λ, the average index of the leader also saturates to a finite
value that is an increasing function of λ.

For random attachment (Ak = 1), the leader index grows as Jlead(N) ∼ Nψ

with ψ ≈ 0.41 (Fig. 2.7). The leader is still an early node (since ψ < 1), but
not necessarily one of the earliest. From our simulations, a node with index
greater than 100 has a probability of approximately 10−2 of being the leader for
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Fig. 2.7. a Average index of the leader Jlead(N) as a function of the total number of
nodes N for 105 realizations of a growing network. Shown are the cases of attachment
rates Ak = 1 and Ak = k. b Average number of lead changes L(N) as a function of
network size N for 105 realizations of the network for Ak = 1 and Ak = k
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a network of 105 nodes. Thus, in random attachment, the order of node creation
plays a significant, but not deterministic, role in the identity of the leader node.

For constant attachment rate, the identity of the leader can be simply read off
from (2.13); thus the index of the leader node, Jlead(N) = N(2/3)kmax [33]. We
estimate the maximum degree from the extremal criterion

∑
k≥kmax

Nk(N) ≈ 1.
Using Nk(N) = N/2k, we find 2kmax ≈ N , or kmax ∼ lnN/ ln 2. Therefore

Jlead(N) ∝ Nψ, with ψ = 2 − ln 3
ln 2

≈ 0.415 037,

in excellent agreement with our numerical results.
For the linear attachment rate, (2.13) now gives Jk(N) ∼ 12N/k2. Since

Nk(N) ∼ 4N/k3, the extremal criterion
∑
k≥kmax

Nk(N) ≈ 1 now gives kmax ≈√
N . Therefore Jlead(N) ∼ 12N/k2

max = O(1) indeed saturates to a finite value.
A similar result holds in the general case Ak = k + λ. Thus the leader is one of
the first few nodes in the network.

Lead Changes

The average number of lead changes L(N) grows logarithmically in N for both
Ak = 1 andAk = k (Fig. 2.7), although the details of the underlying distributions
of the number of lead changes, P (L), are quite different. For Ak = 1, P (L) has a
sharp peak, while for Ak = k, P (L) has a significant tail that stems from repeated
lead changes among the two leading nodes. We also observe numerically that the
number of distinct nodes that enjoy the lead grows logarithmically in N .

This logarithmic behavior can be easily understood. For Ak = 1, the number
of lead changes cannot exceed the maximal degree kmax ∼ lnN/ ln 2. For the
general case Ak = k + λ, when a new node is added, the lead changes if the
leadership is currently shared between two (or more) nodes and the new node
attaches to a co-leader. The number of co-leader nodes (with degree k = kmax)
is N/k3+λ

max , while the probability of attaching to a co-leader is kmax/N . Thus the
average number of lead changes satisfies

d

dN
L(N) ∝ kmax

N

N

k3+λ
max

. (2.25)

Since kmax grows as N1/(2+λ), (2.25) reduces to dL(N)/dN ∝ N−1 or L(N) ∝
lnN . This argument can be adapted to arbitrary attachment rates that do not
grow faster than linearly with k.

Fate of the First Leader

Finally, we study the survival probability S(N) that a node that was initially in
the lead (has the maximum degree) remains in the lead as the network evolves.
For Ak = k + λ with λ < ∞, S(N) is non-zero as N → ∞ (Fig. 2.8). Thus the
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Fig. 2.8. Probability that the first node leads throughout the evolution for 105 rea-
lizations for N ≤ 107 for Ak = k (upper), and N ≤ 108 for Ak = 1 (lower)

rich get richer holds in a strong form – the lead never changes with a positive
probability.

For constant attachment rate the situation is more interesting, as being rich
at birth is not as deterministic an influence as in the case of linear attachment.
Numerically, S(N) decays very slowly to zero as N → ∞ (Fig. 2.8); a power law
S(N) ∝ N−φ is a reasonable fit, but the local exponent is still slowly decreasing
at N ≈ 108 where it has reached φ(N) ≈ 0.18. To understand this behavior,
consider the degree distribution of the first node. This quantity satisfies the
recursion relation

P (k,N) =
1
N
P (k − 1, N − 1) +

N − 1
N

P (k,N − 1) (2.26)

which reduces to the convection-diffusion equation
(

∂

∂ lnN
+

∂

∂k

)

P =
1
2
∂2P

∂k2 (2.27)

in the continuum limit. The solution is a Gaussian

P (k,N) =
1√

2π lnN
exp

{

− (k − lnN)2

2 lnN

}

. (2.28)

Thus the degree of the first node grows as lnN , with fluctuations of the order
of

√
lnN . On the other hand, from the degree distribution Nk(N) = N/2k

the maximal degree grows as kmax = v lnN with v = 1/ ln 2 ≈ 1.44, and its
fluctuations are negligible.

We now estimate S(N) as the probability that the degree of the first node ex-
ceeds the maximal degree. For large N , this criterion, S(N) ≈ ∑

k≥kmax
P (k,N),

becomes
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S(N) ∝
∫ ∞

v lnN

dk√
lnN

exp
{

− (k − lnN)2

2 lnN

}

∝ N−φ (lnN)−1/2 , (2.29)

with φ = (v − 1)2/2 ≈ 0.0979 . . . . The recursion (2.26) can, in fact, be solved
exactly and gives P (k,N) =

[
N
k

]
/N !, for the dimer initial condition, where

[
N
k

]

is the Stirling number of the first kind [35]. Using this instead of the Gaussian
approximation leads to the exact exponent φ = 1 − v + v ln v ≈ 0.08607. In
either case, the logarithmic factor leads to the very slow approach to asymptotic
behavior seen in Fig. 2.8.

2.4 Protein Networks

Finally, we study a toy protein interaction network model that evolves by the
biologically-inspired processes of protein duplication and subsequent mutation,
as illustrated in Fig. 2.1b [14, 16, 17, 18]. By adapting the rate equation to ac-
count for these growth steps, we show that: (i) the system undergoes an infinite-
order percolation transition as a function of mutation rate, with a rate-dependent
power-law cluster-size distribution everywhere below the threshold, (ii) there are
giant fluctuations in network structure and no self-averaging for large duplica-
tion rate, and (iii) the degree distribution has a power-law tail with a peculiar
rate-dependent exponent.

2.4.1 Infinite-Order Percolation Transition

The protein network has rich percolation properties because the mutation pro-
cess in Fig. 2.1b can lead to an arbitrary number of clusters being joined in a
single step of the evolution. To study these percolation properties, we consider
the simpler limit where mutations can occur, but no duplication (β > 0, δ = 1).
Let Cs(N) be the number of clusters of size s ≥ 1. This distribution obeys the
rate equation

dCs
dN

= −β sCs
N

+
∞∑

n=0

βn

n!
e−β ∑

s1···sn

n∏

j=1

sjCsj

N
, (2.30)

where the sum is over all s1 ≥ 1, . . . , sn ≥ 1 such that s1 + · · ·+ sn+1 = s. The
first term on the right accounts for the loss of Cs due to the linking of a cluster
of size s with the newly-introduced node. The gain term accounts for all possible
merging processes of n initially separated clusters whose total size is s− 1.

Employing the now familiar ansatz that Cs(N) = Ncs, and introducing the
generating function g(z) =

∑
s≥1 scs e

sz, (2.30) becomes

g = −βg′ + (1 + βg′) ez+β(g−1), (2.31)
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where g′ = dg/dz. To detect the percolation transition, we use the fact that
g(0) =

∑
scs is the fraction of nodes within finite clusters. Thus in the non-

percolating phase g(0) = 1 and the average cluster size 〈s〉 =
∑
s2cs = g′(0),

while in the percolating phase the size of the infinite cluster (the giant compo-
nent) is NG = N(1 − g(0)). To determine g′(0), we substitute the expansion
g(z) = 1 + zg′(0) + . . . into (2.31) and take the z → 0 limit. This yields a
quadratic equation for g′(0), with solution

g′(0) = 〈s〉 =
1 − 2β − √

1 − 4β
2β2 . (2.32)

This real only for β ≤ 1/4, thus identifying the percolation threshold as βc = 1/4.
For β > βc, we express g′(0) in terms of the size of the giant component by setting
z = 0 in (2.31) to give

g′(0) =
e−βG +G− 1
β (1 − e−βG)

. (2.33)

As β → βc, we use G → 0 to simplify (2.33) and find 〈s〉 → (1 − βc)β−2
c = 12.

On the other hand, (2.32) shows that 〈s〉 → 4 when β → βc from below. Thus
the average size of finite clusters jumps discontinuously from 4 to 12 as β passes
through βc = 1/4.

The cluster size distribution cs exhibits distinct behaviors below, at, and
above the percolation transition. For β < βc, the asymptotic behavior of cs
can be read off from the generating function as z → 0. If cs has the power-law
behavior cs ∼ B s−τ as s → ∞, then the corresponding generating function g(z)
has the small-z expansion g(z) = 1 + g′(0) z + BΓ (2 − τ) (−z)τ−2 + . . . . The
regular terms are needed to reproduce the known zeroth and first derivatives
of the generating function, while the asymptotic behavior is controlled by the
dominant singular term (−z)τ−2. Substituting this expansion into (2.31) we find
that the dominant terms are of the order of (−z)τ−3. Balancing all contributions
of this order gives

τ = 1 +
2

1 − √
1 − 4β

. (2.34)

Thus a power-law cluster size distribution with a non-universal exponent arises
for all β < βc; that is, the entire range β < βc is critical.

At the transition, (2.34) gives τ = 3. However, cs ∝ s−3 cannot be correct as
it implies that g′(0) diverges. The above expansion of the generating function is
also not valid for τ = 3. As in other such situations, we anticipate a logarithmic
correction. A detailed analysis of the generating function under this assumption
gives [18]

cs ∼ 8
s3 (ln s)2

as s → ∞. (2.35)
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The size of the giant component G(β) is obtained by solving (2.31) near
z = 0. A detailed analysis shows that near βc

G(β) ∝ exp
(

− π√
4β − 1

)

, (2.36)

so that all derivatives of G(β) vanish as β → βc. Thus the transition is of infi-
nite order. Similar behaviors were observed [23, 36, 37, 38] for growing network
models where single nodes and links were introduced independently. This ge-
neric growth mechanism seems to give rise to fundamentally new percolation
phenomena.

Giant Fluctuations

In the complementary limit of no mutations (β = 0), individual realizations
of the network evolution fluctuate strongly. We can understand the underlying
mechanism for these fluctuations most directly by studying the limit of deter-
ministic duplication (δ = 0), where all the links of the duplicated protein are
completed [18]. There is still a stochastic element in this growth, as the node
to be duplicated is chosen randomly. Consider the generic initial state of two
nodes that are joined by a single link. We denote this graph as K1,1, following
the graph theoretic terminology [39] that Kn,m is the complete bipartite graph
in which every node in the subgraph of size n is linked to every node in the
subgraph of size m. Duplicating one of the nodes in K1,1 gives K2,1 or K1,2,
equiprobably. By continuing to duplicate nodes, it is easy to verify that at every
stage the network always remains a complete bipartite graph, say Kk,N−k, and
that every value of k = 1, . . . , N − 1 occurs with equal probability (Fig. 2.9).
Thus the degree distribution remains singular – it is always the sum of two delta
functions! For fixed N , an average over all realizations of the evolution gives the
average degree distribution

〈Nk〉 = 2
(

1 − k − 1
N − 1

)

. (2.37)

m sites
degree n

degree m

Kn,m

n sites

n

n+m
m

n+m

Kn,m+1 prob. 

Kn+1,m prob. 

Fig. 2.9. Evolution of the complete bipartite graph Km,n after one deterministic
duplication. Only the links emanating from the top nodes of each component are shown
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This loss of self averaging is generic; different realizations of the growth lead
to statistically distinguishable networks for any initial condition. Similar giant
fluctuations also arise in the general case of imperfect duplication where δ > 0
[18].

2.4.2 Non-universal Degree Distribution

Finally, consider the evolution when both incomplete duplication and mutation
occur (δ < 1, β > 0). In each growth step, the average number of links L increases
by β + (1 − δ)D (Fig. 2.1b), where D is the average node degree of the network.
Therefore, L = [β + (1 − δ)D]N . Combining this with D = 2L/N gives [16, 17]

D =
2β

2δ − 1
, (2.38)

a result that applies only when δ > δc = 1/2. Below this threshold, the number
of links grows as

dL

dN
= β + 2(1 − δ)

L

N
, (2.39)

and combining with D(N) = 2L(N)/N , we find

D(N) =






finite δ > 1/2,
β lnN δ = 1/2,
const.×N1−2δ δ < 1/2.

(2.40)

Without mutation (β = 0) the average node degree always scales as N1−2δ, so
that a realistic finite average degree is recovered only when δ = 1/2. Thus muta-
tions play a constructive role, as a finite average degree arises for any duplication
rate δ > 1/2.

We now apply the rate equations to study the degree distribution Nk(N) for
this case of δ > 1/2 and β > 0. The degree k of a node increases by one at a
rate Ak = (1 − δ)k + β. The first term arises because of the contribution from
duplication, while mutation leads to the k-independent contribution. The rate
equations for the degree distribution are therefore

dNk
dN

=
Ak−1Nk−1 −AkNk

N
+Gk. (2.41)

The first two terms account for processes in which the node degree increases by
one. The source term Gk describes the introduction of a new node of k links,
with a of these links created by duplication and b = k − a created by mutation.
The probability of the former is

∑
s≥a ns

(
s
a

)
(1 − δ)aδs−a, where ns = Ns/N

is the probability that a node of degree s is chosen for duplication, while the
probability of the latter is βb e−β/b!. Since duplication and random attachment
are independent processes, the source term is
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Fig. 2.10. The degree distribution exponent γ as a function of δ from the numerical
solution of (2.45)

Gk =
∑

a+b=k

∞∑

s=a

ns

(
s

a

)

(1 − δ)aδs−a
βb

b!
e−β . (2.42)

Substituting Nk(N) = N nk into the rate equations yields
(

k +
β + 1
1 − δ

)

nk =
(

k − 1 +
β

1 − δ

)

nk−1 +
Gk

1 − δ
. (2.43)

Since Gk depends on ns for all s ≥ k, the above equation is not a recursion.
However, for large k, we reduce it to a recursion by noting that as k → ∞, the
main contribution to the sum in (2.42) arises when b is small. Thus a is close
to k, and the summand is sharply peaked around s ≈ k/(1 − δ). We may then
replace the lower limit by s = k, and ns by its value at s = k/(1 − δ). Further,
if nk decays as k−γ , we write ns = (1 − δ)γnk and simplify Gk to

Gk ≈ (1 − δ)γ nk
∞∑

s=k

(
s

k

)

(1 − δ)kδs−k
∞∑

b=0

βb

b!
e−β

= (1 − δ)γ−1nk, (2.44)

since the former binomial sum equals (1 − δ)−1.
These steps reduce (2.43) to a recursion, from which we deduce that nk has

the power-law behavior nk ∼ k−γ , with γ determined from [18, 40]

γ(δ) = 1 +
1

1 − δ
− (1 − δ)γ−2. (2.45)

The exponent γ has a strong dependence on δ (Fig. 2.10). Further, since the re-
placement of ns by (1−δ)γnk is valid only asymptotically, the degree distribution
should converge slowly to the predicted power law form. This slow approach to
asymptotic behavior is observed in large-scale simulations [18]. The correspon-
ding exponent γ(δ) is independent of the mutation rate β but depends sensitively
on the duplication rate. Nevertheless, the presence of mutations (β > 0) is vital
to suppress the non-self-averaging as the network evolves and thus make possible
a smooth degree distribution.
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2.5 Outlook

We hope that the reader is persuaded that the rate equations are a powerful,
yet readily applicable tool, to investigate the structure of growing networks. For
incrementally growing networks, we have obtained rather complete results for the
degree distribution and some of the most important ensuing consequences. We
also studied a toy protein interaction network model that evolves by duplication
and mutation. In the absence of duplication, the network undergoes an infinite-
order percolation transition as a function of the mutation rate. In the absence of
mutation, the network exhibits giant sample-specific fluctuations. It is only with
the inclusion of mutations that robust and statistically similar networks can be
generated.

In summary, the rate equation approach is well-suited to treat a wide range
phenomenology associated with evolving networks. Its full potential in this field
is just starting to be fully exploited.

The work on protein networks was in collaboration with Byungnam Kahng
and Jeenu Kim. This research was supported in part by NSF grant DMR9978902.

References

1. Recent reviews include: S.H. Strogatz: Nature 410, 268 (2001); R. Albert, A.-
L. Barabási: Rev. Mod. Phys. 74, 47 (2002); S.N. Dorogovtsev, J.F.F. Mendes:
Adv. Phys. 51, 1079 (2002).

2. M.H. Ernst: in Fractals in Physics, edited by L. Pietronero, E. Tosatti (Elsevier,
Amsterdam, 1986), p. 289.

3. A.J. Bray: Adv. Phys. 43, 357 (1994).
4. A. Pimpinelli, J. Villain: Physics of Crystal Growth (Cambridge University Press,

Cambridge, 1998).
5. H.A. Simon: Biometrica 42, 425 (1955); H.A. Simon: Models of Man (Wiley, New

York, 1957).
6. A.-L. Barabási, R. Albert: Science 286, 509 (1999); R. Albert, H. Jeong, A.-L. Ba-

rabási: Nature 401, 130 (1999).
7. G.U. Yule: Phil. Trans. Roy. Soc. B 213, 21 (1924); The Statistical Study of Literary

Vocabulary (Cambridge University Press, Cambridge, 1944).
8. S.R. Kumar, P. Raphavan, S. Rajagopalan, A. Tomkins: in Proc. 8th WWW Conf.

(1999); J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins: in
Lecture Notes in Computer Science, Vol. 1627 (Springer-Verlag, Berlin, 1999).

9. B.A. Huberman, L.A. Adamic: Nature 401, 131 (1999); G. Caldarelli, R. Marchetti,
L. Pietronero: Europhys. Lett. 52, 386 (2000)

10. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tom-
kins, J. Wiener: Computer Networks 33, 309 (2000).

11. P.L. Uetz et al.: Nature 403, 623 (2000); E.M. Marcotte et al.: Nature 402, 83
(1999); A. J. Enright et al.: Nature 402, 86 (1999); T. Ito et al.: Proc. Natl. Acad.
Sci. USA 97, 1143 (2000); ibid 98, 4569 (2001).

12. J.-C. Rain et al.: Nature 409, 211 (2001).
13. H. Jeong et al.: Nature 411, 41 (2001).



22 P.L. Krapivsky and S. Redner

14. A. Wagner: Mol. Biol. Evol. 18, 1283 (2001).
15. F. Slanina, M. Kotrla: Phys. Rev. E 62, 6170 (2000).
16. A. Vazquez, A. Flammini, A. Maritan, A. Vespignani: cond-mat/0108043.
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Abstract. Scale-free networks are networks with a scale-free degree distribution, i.e.,
where the distribution of the number of links per node is a power-law, p(k) = ck−λ. We
review results for the properties of such networks, emphasizing the structural properties
of these networks. We begin with normal random scale-free networks and present their
percolation properties. We also review results for directed scale-free networks and their
percolation properties. Finally we present a study of the possibility of embedding scale-
free networks in a lattice.

3.1 Random Scale-Free Networks

The study of random network models began with Erdős and Rényi [1, 2, 3].
They studied models of networks with randomly distributed links. Those models
lead to Poisson degree distributions [4]. Due to the development of computers,
allowing the analysis of large amounts of data, and the formation of large scale
networks, such as the Internet and WWW, some analysis of real world networks
has been done in the last decade [5, 6, 7, 8, 9]. This research lead to the conclusion
that real world networks are not described correctly by the ER model. The main
difference found was that the degree distribution of real world networks studied
was found to be very broad rather than the narrow Poisson distribution. Many
of the networks studied can be fitted with a scale-free degree distribution. In
this chapter we will elaborate on the properties of scale free networks.

A scale free network is a network having a degree distribution:

P (k) = ck−λ, (3.1)

where λ is the exponent and c is an appropriate normalization factor. The dis-
tribution is limited by the lower and upper cutoffs, which we will denote by m
and K, respectively. The unique properties of this distribution stem from the
fact that all moments with n ≥ λ−1 diverge with K (which is usually increasing
with the size of the network).

3.1.1 Percolation Threshold

Percolation theory deals with the cluster structure of networks when a fraction
of the sites or bonds is removed. A spanning cluster (or a “giant component”
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in the terminology of random graphs) is a cluster of connected sites (i.e. where
there is a path from each site to each other) of the order of the size of the entire
network. Most standard treatments of percolation deal with lattices and regular
graphs. However, a similar treatment can be applied to random networks.

For a general random network having degree distribution P (k) to have a
spanning cluster, a site which is reached by following a link from this cluster
must have at least one other link on average to allow the cluster to exist. For
this to happen the average degree of a site must be at least 2 (one incoming and
one outgoing link) given that the site i is connected to j:

〈ki|i ↔ j〉 =
∑

ki

kiP (ki|i ↔ j) = 2. (3.2)

Using Bayes rule we get

P (ki|i ↔ j) = P (ki, i ↔ j)/P (i ↔ j) = P (i ↔ j|ki)P (ki)/P (i ↔ j), (3.3)

where P (ki, i ↔ j) is the joint probability that node i has degree ki and that
it is connected to node j. For randomly connected networks (neglecting loops)
P (i ↔ j) = 〈k〉/(N − 1) and P (i ↔ j|ki) = ki/(N − 1), where N is the total
number of nodes in the network. Using the above criteria (3.2) reduces to [10, 11]:

κ ≡ 〈k2〉
〈k〉 = 2, (3.4)

at the critical point. A spanning cluster exists for graphs with κ > 2, while
graphs with κ < 2 contain only small clusters whose size is not proportional to
that of the entire network. This criterion was derived earlier by Molloy and Reed
[10] using a somewhat different arguments.

The negligence of loops can be justified below the threshold since the probabi-
lity for a bond to form a loop in an s-node cluster is proportional to (s/N)2 (i.e.,
proportional to the probability of choosing two sites in that cluster). Calculating
the fraction of loops Ploop in the system yields:

Ploop ∝
∑

i

s2i
N2 <

∑

i

siS

N2 =
S

N
, (3.5)

where the sum is over all clusters in the system and si is the size of the ith cluster
[12]. Therefore, the fraction of loops in the system is less than or proportional
to S/N , where S is the size of the largest cluster. Below the critical threshold
there is no spanning cluster in the system and therefore the fraction of loops
is negligible. Hence, for values of κ below κ = 2, loops can be neglected. At
the threshold the structure of the spanning cluster is almost a tree. Above the
threshold loops can no longer be neglected, but since this only happens when
a spanning cluster exists the criterion in (3.4) is valid as a criterion for finding
the critical point. A derivation of the exact conditions under which (3.4) is valid
can be found in [10].
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The above reasoning can be applied to the problem of percolation on a ge-
neralized random network. If we randomly remove a fraction p of the sites (or
bonds), the degree distribution of the remaining sites will change. For instance,
sites with initial degree k0 will have, after the random removal of nodes, a dif-
ferent number of connections, depending on the number of removed neighbors.
The new number of connections will be binomially distributed. If we begin with
a distribution of degrees P0(k0), the new degree distribution of the network will
be:

P (k) =
∞∑

k0=k

P0(k0)
(
k0

k

)

(1 − p)kpk0−k. (3.6)

Calculating the first moment for this distribution, given 〈k0〉 and 〈k2
0〉 for the

original distribution leads to:

〈k〉 =
∞∑

k=0

P (k)k = (1 − p)〈k0〉. (3.7)

In the same manner we can calculate the second moment:

〈k2〉 =
∞∑

k=0

P (k)k2 = (1 − p)2〈k2
0〉 + p(1 − p)〈k0〉. (3.8)

Both those quantities can be substituted into (3.4) to find the criterion for
criticality. This yields:

κ ≡ 〈k2〉
〈k〉 =

(1 − p)2〈k2
0〉 + p(1 − p)〈k0〉

(1 − p)〈k0〉 = 2. (3.9)

Reorganizing (3.9), one gets the critical threshold for percolation [11]:

1 − pc =
1

κ0 − 1
, (3.10)

where κ0 ≡ 〈k2
0〉/〈k0〉 is calculated using the original distribution, before the

removal of sites.
Eqations (3.4) and (3.10) are valid for a wide range of generalized random

graphs and distributions. For example for a Cayley tree – a graph with a fixed
degree z and no loops – the criterion from (3.10) can be used. This yields the
critical concentration qc = 1− pc = 1/(z− 1), which is well known [13]. Another
example is a random Erdös-Rényi (ER) graph. In those graphs edges are distri-
buted randomly and the resulting degree distribution is Poissonian [4]. Applying
the criterion from (3.4) to a Poisson distribution yields:

κ ≡ 〈k2〉
〈k〉 =

〈k〉2 + 〈k〉
〈k〉 = 2, (3.11)
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which reduces to 〈k〉 = 1 as known for ER graphs [4].
Our main concern in this chapter will be with the behavior of scale-free net-

works. Scale-Free networks are networks whose degree distribution (i.e. fraction
of sites with k connections) behaves as:

P (k) ∝ k−λ, m ≤ k ≤ K, (3.12)

where λ is the exponent, m is the lower cutoff, and K is the upper cutoff. There
are no sites with degree below m and above K. For finite networks the upper
cutoff N arises naturally since the fraction of high-degree sites decays with k.
An estimate of this cutoff can be found by the assumption that the tail of the
distribution above K is of the order of one site [11]:

∞∑

k=K

P (k) ∼
∫ ∞

K

P (k)dk =
1
N
. (3.13)

The estimate obtained this way gives:

K ≈ mN1/(λ−1). (3.14)

This estimate allows the derivation of finite size effects in the network and al-
lows calculations of moments of the distribution in (3.12), that would otherwise
diverge. Newman et al [14] use an exponential cutoff rather than a sharp one,
but the effect on the results is minor.

The importance of scale-free networks lies in the fact that this distribution
occurs in many natural and man-made networks [5, 14, 15]. An example of
a scale-free network is the physical Internet structure, that is the router to
router (and end-units) connectivity. This structure was studied by Faloutsos et
al [5]. They have found that the inter-router network is a non-directed scale-free
network with λ ≈ 2.5. The size of the Internet today is about 107 sites, making
it a fairly large network.

Further results about the structure of scale-free networks have also been
proven by Aiello et al [16]. The size of the infinite cluster was calculated, and it
was found that for λ ≤ 2 the infinite cluster is of almost the size of the entire
graph (i.e. P∞ = 1 − o(1), where o(1) is a function of the network size, f(N),
such that f(N) → 0 when N → ∞). For λ > λc = 3.478 . . . there is no infinite
cluster at all (since we use a somewhat different distribution [17], we get λc ≈ 4).
For λ < λc the second largest cluster is of order lnN . For lower cutoff m ≥ 2 a
spanning cluster exists for every λ.

The average distance between sites is also different in scale free sites from
its value for normal random graphs. While for ER graphs the average distance
between sites behaves as d ∼ lnN [4], for scale free graphs with 2 < λ < 3
the distance behaves as d ∼ ln lnN [18, 19], for λ = 2, d ∼ const, and for
λ = 3, d ∼ lnN/ ln lnN [20]. The reason for this short distance is the small
core, containing most high degree sites, which has a very small diameter. For
λ > 3 the random graph behavior d ∼ lnN is recovered. Those results were later
confirmed using different methods in [21, 22].
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3.1.2 Generating Functions

A general method for studying the size of the infinite cluster and the residual
network for a graph with an arbitrary degree distribution was first developed
by Molloy and Reed [23]. They suggested viewing the infinite cluster as being
explored and used differential equations for the number of un-exposed links and
unvisited sites to find the size of the infinite cluster and the degree distribution
of the residual graph (the finite clusters).

An alternative and very powerful derivation was given by Newman, Strogatz
and Watts [14]. They have used the generating functions method to study the
size of the infinite cluster as well as other quantities (such as the diameter and
cluster size distribution). They have also applied this method to other types of
graphs (directed and bipartite). Here we closely follow their derivation in order
to find the size of the infinite cluster and the critical exponents.

In [14, 24] a generating function is built for the degree distribution:

G0(x) =
∞∑

k=0

P (k)xk. (3.15)

The probability of reaching a site with degree k by following a specific link is
kP (k)/〈k〉 [10, 11, 14, 24], and the corresponding generating function for those
probabilities is

G1(x) =
∑
kP (k)xk−1
∑
kP (k)

=
d

dx
G0(x)/〈k〉 . (3.16)

Assuming that H1(x) is the generating function for the probability of reaching a
branch of a given size by following a link, the self-consistent equation for H1(x)
is:

H1(x) = 1 − q + qxG1(H1(x)) . (3.17)

Since G0(x) is the generating function for the degree of a site, the generating
function for the probability of a site to belong to an n-site cluster is:

H0(x) = 1 − q + qxG0(H1(x)) . (3.18)

Below the transition, H0(1) = 1, since this is the probability to belong to a
cluster of any size. However, above the transition this probability is no longer
normalized since this does not include the infinite cluster. Then, the relative size
of the giant cluster is P∞ = 1− q+ qH0(1), since H0 contains only the finite-size
clusters. It follows that

P∞ = q

(

1 −
∞∑

k=0

P (k)uk
)

, (3.19)

where u ≡ H1(1) is the smallest positive root (which can be found numerically)
of
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u = 1 − q +
q

〈k〉
∞∑

k=0

kP (k)uk−1 . (3.20)

This equation can be solved numerically and the solution can be substituted into
(3.19) to calculate the size of the infinite cluster in a graph with a given degree
distribution.

3.1.3 Critical Exponents

Using Abelian and Tauberian methods [25, 26] one can use . (3.19) and (3.20)
to find the critical exponents for percolation in scale free networks. Some preli-
minary results can be found in [27]. A more detailed treatment can be found in
[28, 19]. Here we just state the results.

The size of the giant component near the critical point behaves as P∞ ∼
(p− pc)β , where

β =






1
3−λ 2 < λ < 3,

1
λ−3 3 < λ < 4,
1 λ > 4.

(3.21)

The number of clusters with size s behaves as ns ∼ (p− pc)−τ , where

τ = 2 +
1

λ− 2
=

2λ− 3
λ− 2

, 2 < λ < 4 . (3.22)

For λ > 4, τ = 2.5, which is the regular mean field value. From those results
it can be seen that the critical exponents are anomalous even when the second
moment 〈k2〉 is convergent and only the third moment 〈k3〉 diverges, as in the
case of 3 < λ < 4.

From τ it can be deduced that the “double jump” in Erdős-Rényi graphs is
also seen in scale free graphs, Where S, the size of largest component, scales
as S ∼ N (λ−2)/(λ−1) exactly at criticality [19]. For λ ≥ 4 the known result of
S ∼ N2/3 is obtained. The fractal dimensions at criticality for λ > 3 can also be
obtained [19] and are:

dl =
λ− 2
λ− 3

, df = 2
λ− 2
λ− 3

, dc = 2
λ− 1
λ− 3

, (3.23)

where for λ ≥ 4 the regular mean field values of 2, 4, 6 are restored.

3.2 Directed Graphs

Many complex networks in nature have directed links, a property that affects the
network’s navigability and large-scale topology. Here we study the percolation
properties of such directed scale-free networks with correlated in and out degree
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distributions. We derive a phase diagram that indicates the existence of three
regimes, determined by the values of the degree exponents. In the first regime
we regain the known directed percolation mean field exponents. In contrast, the
second and third regimes are characterized by anomalous exponents, which we
calculate analytically. In the third regime the network is resilient to random
dilution, i.e., the percolation threshold is pc → 1.

Recently the topological properties of large complex networks such as the
Internet, WWW, electric power grid, cellular and social networks have drawn
considerable attention [29, 15]. Some of these networks are directed, for ex-
ample, in social and economical networks [30] if node A gains information or
acquires physical goods from node B, it does not necessarily mean that node
B gets similar input from node A. Likewise, most metabolic reactions [31] are
one-directional, thus changes in the concentration of molecule A affect the con-
centration of its product B, but the reverse is not true. Despite the directedness
of many real networks, the modeling literature, with few notable exceptions
[14, 32], has focused mainly on undirected networks.

An important property of directed networks can be captured by studying
their degree distribution, P (j, k), or the probability that an arbitrary node has
j incoming and k outgoing edges. Many naturally occurring directed networks,
such as the WWW, metabolic networks, citation networks, etc., exhibit a power-
law, or scale-free degree distribution for the incoming or outgoing links:

Pin(out)(l) = cl−λin(out) , l ≥ m , (3.24)

where m is the minimal connectivity (usually taken to be m = 1), c is a
normalization factor and λin(out) are the in(out) degree exponents characte-
rizing the network [6, 7]. An important property of scale-free networks is
their robustness to random failures, coupled with an increased vulnerability to
attacks [33, 11, 24, 27, 34]. Recently it has been recognized that this feature
can be addressed analytically in quantitative terms [11, 24, 27] by combining
graph theoretical concepts with ideas from percolation theory. Yet, while the
percolation properties of undirected networks are much studied, little is known
about the effect of node failure in directed networks. As many important net-
works are directed, it is important to fully understand the implications to their
stability. Here we review and extend the results [35] showing that directedness
has a strong impact on the percolation properties of complex networks and we
draw a detailed phase diagram.

3.2.1 Structure

The structure of a directed graph has been characterized in [14, 32], and in the
context of the WWW in [7]. In general, a directed graph consists of a giant
weakly connected component (GWCC) and several finite components. In the
GWCC every site is reachable from every other, provided that the links are
treated as bi-directional. The GWCC is further divided into a giant strongly
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TendrilsFinite components

Fig. 3.1. Structure of a general directed graph

connected component (GSCC), consisting of all sites reachable from each other
following directed links. All the sites reachable from the GSCC are referred to
as the giant OUT component, and the sites from which the GSCC is reachable
are referred to as the giant IN component. The GSCC is the intersection of the
IN and OUT components. All sites in the GWCC, but not in the IN and OUT
components are referred to as the “tendrils” (see Fig. 3.1).

3.2.2 Percolation Threshold

For a directed random network of arbitrary degree distribution the condition
for the existence of a giant component can be deduced in a manner similar to
[11]. If a site is reached following a link pointing to it, then it must have at least
one outgoing link, on average, in order to be part of a giant component. This
condition can be written as

〈kj |i → j〉 =
∑

ki,kj

kjP (ki, kj |i ↔ j) = 1. (3.25)

Using Bayes rule we get

P (ki, kj |i → j) =
P (ki, kj , i ↔ j)

P (i → j)
=
P (i → j|ki, kj)P (ki, kj)

P (i → j)
. (3.26)

For random networks P (i → j) = 〈k〉/(N −1) and P (i → j|ki, kj) = ki/(N −1),
where N is the total number of nodes in the network. The above criterion thus
reduces to [14, 32]

〈jk〉 ≥ 〈k〉. (3.27)
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Suppose a fraction p of the nodes is removed from the network. (Alternatively,
a fraction q = 1 − p of the nodes is retained.) The original degree distribution,
P (j, k), becomes

P ′(j, k) =
∞∑

j0,k0

P (j0, k0)
(
j0
j

)

(1 − p)jpj0−j
(
k0

k

)

(1 − p)kpk0−k . (3.28)

In view of this new distribution, (3.27) yields the percolation threshold

qc = 1 − pc =
〈k〉
〈jk〉 , (3.29)

where averages are computed with respect to the original distribution before
dilution, P (j, k). Equation (3.29) indicates that in directed scale-free networks
if 〈jk〉 diverges then qc → 0 and the network is resilient to random breakdown
of nodes and bonds.

The term 〈jk〉 may be dramatically influenced by the appearance of correla-
tions between the in- and out-degrees of the nodes. In particular, let us consider
scale-free distributions for both the in- and out-degrees:

Pin(j) ∼
{
Bcinj

−λin j = 0,
1 −B j = 0,

(3.30)

and

Pout(k) = coutk
−λout . (3.31)

In (3.30) we choose to add the possible zero value to the in-degree in order
to maintain 〈j〉 = 〈k〉. If the in- and out-degrees are uncorrelated, we expect
〈jk〉 = 〈j〉〈k〉. For several real directed networks this equality does not hold. For
example, the network of Notre-Dame University WWW [6], has 〈k〉 = 〈j〉 ≈ 4.6,
and thus 〈j〉〈k〉 = 21.16. In contrast, measuring directly we find 〈jk〉 ≈ 200,
about an order of magnitude larger than the result expected for the uncorrelated
case. This yields an estimate of qc ≈ 0.02, i.e., a very stable directed network.
Similar results are also obtained for metabolic networks studied in [31], indicating
that in many real directed networks, the in- and out-degrees are correlated.

To address correlations, we model it in the following manner: we first generate
the j values for the entire network. Next, for each site with j = 0 with probability
A we generate k fully correlated with j, i.e., k = k(j). Assuming that k(j) is a mo-
notonically increasing function then the requirement coutk−λoutdk = cinj

−λindj
— needed to maintain the distributions scale-free — leads to kλout−1 = jλin−1.
With probability 1 −A, the degree k is chosen independently from j:

P (j, k) ∼
{

(1 −A)Bcinj−λincoutk
−λout +BAcoutk

−λoutδj,j(k) j = 0,
(1 −B)coutk−λout j = 0,

(3.32)
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Fig. 3.2. Phase diagram of the different regimes for the IN component of scale-free
correlated directed networks. The boundary between Resilient and Anomalous expo-
nents is derived from (3.33) while that between Anomalous exponents and Mean field
exponents is given by (3.48) for λ� = 4. For the diagram of the OUT component λin

and λout change roles. After [35]

where j(k) = k
λout−1
λin−1 . With this distribution, any finite fraction BA of fully

correlated sites yields a diverging 〈jk〉 whenever

(λout − 2)(λin − 2) ≤ 1 , (3.33)

causing the percolation threshold to vanish (see Fig. 3.2). The influence of even
very small correlation on the threshold, and the sharpness of the transition to
the resilient regime can be seen in Fig. 3.3.

In the case of no correlations between the in- and the out-degrees, A = 0,
(3.32) becomes P (j, k) = Pin(j)Pout(k). Then the condition for the existence of
a giant component is: 〈k〉 = 〈j〉 = 1. Moreover, (3.29) reduces to:

qc = 1 − pc =
1

〈k〉 . (3.34)

Applying (3.34) to scale-free networks one concludes that for λout > 2 and
λin > 2 a phase transition exists at a finite qc. Here we concern ourselves with the
critical exponents associated with the percolation transition in both correlated
and uncorrelated scale-free network of λout > 2 and λin > 2, which is the most
relevant regime (Fig. 3.2).

Percolation of the GWCC can be seen to be similar to percolation in the non-
directed graph created from the directed graph by ignoring the directionality of
the links. The threshold is obtained from the criterion [11]
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qc =
〈k〉

〈k(k − 1)〉 . (3.35)

Here the connectivity distribution is the convolution of the in and out distribu-
tions

P ′(k) =
k∑

l=0

P (l, k − l). (3.36)

Regardless of correlations, P ′(k) is always dominated by the slower decay-
exponent, therefore percolation of the GWCC is the same as in non-directed
scale-free networks, with λeff = min(λin, λout). Note that the percolation thres-
hold of the GWCC may differ from that of the GSCC and the IN and OUT
components [32].

3.2.3 Critical Exponents

We now use the formalism of generating functions [26] to analyze percolation of
the GSCC and IN and OUT components [35]. In [14, 32] a generating function
is built for the joint probability distribution of outgoing and incoming degrees,
before dilution:

Φ(x, y) =
∑

k,j

P (j, k)xjyk . (3.37)
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Using the approach of Callaway et al [24], let q(j, k) be the probability that a
vertex of degree (j, k) remains in the network following dilution. The generating
function after dilution is then

G(x, y) =
∑

k,j

P (j, k)q(j, k)xjyk . (3.38)

From (3.38) it is possible to define the generating function for the outgoing
degrees G0

G0(y) ≡ G(1, y) =
∑

k,j

P (j, k)q(j, k)yk . (3.39)

The probability of reaching a site by following a specific link is proportional to
jP (j, k), therefore, the probability to reach an occupied site following a specific
directed link is generated by

G1(y) =

∑
j,k jP (j, k)q(j, k)yk
∑
j,k jP (j, k)

. (3.40)

Let H1(y) be the generating function for the probability of reaching an ou-
tgoing component of a given size by following a directed link, after a dilution.
H1(y) satisfies the self-consistent equation:

H1(y) = 1 −G1(1) + yG1(H1(y)) . (3.41)

Since G0(y) is the generating function for the outgoing degree of a site, the
generating function for the probability that n sites are reachable from a given
site is

H0(y) = 1 −G0(1) + yG0(H1(y)) . (3.42)

For the case where correlations exist, and assuming random dilution: q(j, k) = q,
(3.41) and (3.42) reduce to

H1(y) = 1 − q +
qy

〈j〉
∑

k

(BAj(k) + (1 −A)〈j〉)Pout(k)H1(y)k , (3.43)

and

H0(y) = 1 − q + qy
∑

k

Pout(k)H1(y)k . (3.44)

If A → 0, one expects that H0(y) = H1(y), since there is no correlation between
j and k, thus the probability to have k outgoing edges is Pout(k) whether we
choose the site randomly or weighted by the incoming edges j.

H0(1) is the probability to reach an outgoing component of any finite size
choosing a site. Thus, below the percolation transition H0(1) = 1, while above
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the transition there is a finite probability to follow a directed link to a site which
is a root of an infinite outgoing component: P∞ = 1 −H0(1). It follows that

P∞(q) = q(1 −
∞∑

k

Pout(k)uk) , (3.45)

where u ≡ H1(1) is the smallest positive root of

u = 1 − q +
q

〈j〉
∑

k

(BAj(k) + (1 −A)〈j〉)Pout(k)uk . (3.46)

Here P∞(q) is the fraction of sites from which an infinite number of sites is
reachable. Equation (3.46) can be solved numerically and the solution may be
substituted into (3.45), yielding the size of the IN component at dilution p = 1−q.

Giant Component Size

Near criticality, the probability to start from a site and reach a giant outgoing
component follows P∞ ∼ (q − qc)β . For mean-field systems (such as infinite-
dimensional systems, random graphs and Cayley trees) it is known that β =
1 [36]. This regular mean-field result is not always valid. Instead, we study [35]
the behavior of (3.46) near q = qc, u = 1, and find

β =






1
3−λ� 2 < λ
 < 3,

1
λ�−3 3 < λ
 < 4,
1 λ
 > 4,

(3.47)

where

λ
 = λout +
λin − λout
λin − 1

. (3.48)

We see that the order parameter exponent β attains its usual mean-field value
only for λ
 > 4. As λout → λin the correlated fraction BA of sites resembles
non-directed networks [28, 37] (where there is no distinction between incoming
and outgoing degrees). In this case we get λ
 = λout = λin for any amount
of correlation A. The criterion for the existence of a giant component is then
〈k2〉/〈k〉 = 1, and not 2 as in the non-directed case. The difference stems from
the fact that in the non-directed case one of the links is used to reach the site,
while in the directed case there is generally no correlation between the location of
the incoming and outgoing links. Therefore, one more outgoing link is available
for leaving the site.

Without any correlations, A = 0, different terms prevail in the analysis and

β =

{
1

λout−2 2 < λout < 3,
1 λout > 3.

(3.49)
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This is the same as (3.47) but with λ
 = λout + 1.
The GSCC is the intersection of the IN and OUT components. Therefore, it

behaves as the smaller of the two components: βGSCC = max(βin, βout). This can
be also derived by applying the same methods as for the IN and OUT components
to the generating function of the GSCC obtained in [32]. The exponent for
the GWCC, on the other hand, is independent of the exponents of the other
components, since the transition point is different.

Finite Component Sizes

It is known that for a random graph of arbitrary degree distribution the finite
clusters follow the scaling form

n(s) ∼ s−τe−s/s∗
, (3.50)

where s is the cluster size and n(s) is the number of clusters of size s. At criticality
s∗ ∼ |q − qc|−σ diverges and the tail of the distribution follows a power law.

The probability that s sites can be reached from a site by following links at
criticality follows p(s) ∼ s−τ , and is generated by H0, where H0(y) =

∑
s p(s)y

s.
As in [28], H0(y) can be expanded from (3.42). In the presence of correlations
we find [35]

τ =

{
1 + 1

λ�−2 2 < λ
 < 4,
3
2 λ
 > 4.

(3.51)

The regular mean-field exponents are recovered for λ
 > 4. For the uncorrelated
case we get [35]

τ =

{
1 + 1

λout−1 2 < λout < 3,
3
2 λout > 3.

(3.52)

Now the regular mean-field results are obtained for λ > 3.

3.2.4 Summary

In summary, we calculate the percolation properties of directed scale-free net-
works. We find that the percolation critical exponents in scale-free networks are
strongly dependent upon the existence of correlations and upon the degree dis-
tribution exponents in the range of 2 < λ
 < 4. This regime characterizes most
naturally occurring networks, such as metabolic networks or the WWW. The re-
gular mean-field behavior of percolation in infinite dimensions is recovered only
for λ
 > 4.

A connection is found between non-directed and directed scale-free percola-
tion exponents for any finite correlation between the in- and out-degrees. The
correlation between the in- and out-degrees is responsible for the change in the
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Table 3.1. Values of λ� for the different network components for both correlated and
uncorrelated cases

uncorrelated correlated

GWCC min(λout, λin) + 1 min(λout, λin)

IN λout + 1 λout + λin−λout
λin−1

OUT λin + 1 λin + λout−λin
λout−1

GSCC min(λout, λin) + 1 min(λ∗
out, λ

∗
in)

critical exponents, and the question whether both incoming and outgoing links
lead to the same sites (as in non-directed networks) has no influence on the ex-
ponents. In the uncorrelated case, i.e. P (j, k) = Pin(j)Pout(k), the probability to
reach an outgoing component does not bear any dependence upon Pin(j). The
results are summarized in Table 3.1.

3.3 Spatially Embedded Scale-Free Graphs

The networks studied so far were examples of infinite dimensional networks.
They are referred to as infinite dimensional objects since there is no notion of
vicinity – every site can connect to every other site with some probability – and
since the number of sites in a chemical distance (minimal path length) l from
a given site grows exponentially (or faster [18]), which is faster than any power
law N(l) ∼ ld, expected for a d-dimensional lattice.

Here we describe a method for embedding scale-free networks, with degree
distribution P (k) ∼ k−λ, in regular Euclidean lattices accounting for geographi-
cal properties [38]. The embedding is driven by a natural constraint of minimiza-
tion of the total length of the links in the system. All networks with λ > 2 can
be successfully embedded up to an (Euclidean) distance ξ which can be made
as large as desired upon the changing of an external parameter. However, the
natural cutoff of the distribution can only be achieved for λ > 3. Clusters of suc-
cessive layers are found to be compact (the fractal dimension is df = d), while
the dimension of the shortest path between any two sites is smaller than one:
dmin = λ−2

λ−1−1/d , contrary to all other known examples of fractals and disordered
lattices. An alternative method was suggested by Warren et al [39].

All of the networks discussed in previous sections were off-lattice, i.e. the
Euclidean distance between nodes was irrelevant. However, real-life networks are
often embedded in Euclidean geographical space (e.g., the Internet is embedded
in the two-dimensional network of routers, neuronal networks are embedded in
a three-dimensional brain, etc.). Indeed, in the case of the Internet, indications
for the relevance of embedding space is given in [40].

Here we review and extend a method for generating scale-free networks on
Euclidean lattices, accounting for geographical properties, and describe some of
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its properties [38]. As a guiding principle we impose the natural restriction that
the total length of links in the system be minimal.

3.3.1 Model Definition

Our model is defined as follows. To each site of a d-dimensional lattice, of size
R, and with periodic boundary conditions, we assign a random connectivity k
taken from the scale-free distribution

P (k) = Ck−λ, m ≤ k < K, (3.53)

where the normalization constant C ≈ (λ− 1)mλ−1 (for K large) [41]. We then
select a site at random and connect it to its closest neighbors until its (previously
assigned) connectivity k is realized, or until all sites up to a distance

r(k) = Ak1/d (3.54)

have been explored. (Links to some of the neighboring sites might prove im-
possible, in case that the connectivity quota of the target site is already filled.)
This process is repeated for all sites of the lattice. We show that following this
method networks with λ > 2 can be successfully embedded up to an (Euclidean)
distance ξ which can be made as large as desired upon the changing of the
external parameter A.

Suppose that one attempts to embed a scale-free network, by the above re-
cipe, in an infinite lattice, R → ∞. Sites with a connectivity larger than a
certain cutoff kc(A) cannot be realized, because of saturation of the surrounding
sites. Consider the number of links n(r) entering a generic site from a surroun-
ding neighborhood of radius r. Sites at distance r′ are linked to the origin with
probability P (k′ > (r′/A)d):

P

(

k′ >
(
r′

A

)d
)

= C

∫

( r′
A )d

k−λdk ∼
{

1 r′ < A.

( r
′
A )d(1−λ) r′ > A.

(3.55)

Hence

n(r) ∼
r∫

0

dr′r′d−1P

(

k′ >
(
r′

A

)d
)

∼ λ− 1
d(λ− 2)

Ad − Ad(λ−1)

d(λ− 2)
rd(2−λ). (3.56)

The cutoff connectivity is then

kc = lim
r→∞n(r) ∼ 1

λ− 2
Ad. (3.57)

The cutoff connectivity implies a cutoff length

ξ = r(kc) ∼ (λ− 2)−1/dA2. (3.58)
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The embedded network is scale-free up to distances r < ξ, and repeats itself
(statistically) for r > ξ, similar to the infinite percolation cluster above critica-
lity: The infinite cluster in percolation is fractal up to the coherence length ξ
and repeats thereafter [13, 42, 43].

When the lattice is finite, R < ∞, the number of sites is finite, N ∼ Rd,
which imposes a maximum connectivity [11, 44]

K ∼ mN1/(λ−1) ∼ Rd/(λ−1). (3.59)

This implies a finite-size cutoff length

rmax = r(K) ∼ AR1/(λ−1). (3.60)

The interplay between the three length scales, R, ξ, rmax, determines the nature
of the network. If the lattice is finite, then the maximal connectivity is kmax = K
only if rmax < ξ. Otherwise (rmax > ξ) the lattice repeats itself at length scales
larger than ξ. As long as min(rmax, ξ) � R, the finite size of the lattice imposes
no serious restrictions. Otherwise ( min(rmax, ξ) ≥ R) finite-size effects become
important. We emphasize that in all cases the degree distribution (up to the
cutoff) is scale-free.

To study the possibility of embedding the network in the lattice we can use
(3.57) in conjunction with (3.54). This yields:

rmax ≡ r(kc) = (λ− 2)1/dk2/d
c . (3.61)

Since we forbid sites to connect further than the lattice size we must demand
rmax ≤ R = N1/d, which means that networks can be embedded in a lattice in
the suggested manner only if kc ≤ N1/2. This limitation imposes an unnatural
cutoff whenever λ < 3, when compared to (3.14).

In Fig. 3.4a we show typical networks that result from our embedding me-
thod, for λ = 2.5 and 5 in two-dimensional lattices (we limit our numerical
results to d = 2). The larger λ is the more closely the network resembles the
embedding lattice, because longer links are rare [45]. In Fig. 3.4b we show the
same networks as in part (a) where successive chemical shells are depicted in dif-
ferent colors. Chemical shell l consists of all sites at minimal distance (minimal
number of connecting links) l from a given site. For our choice of parameters,
λ = 5 happens to fall in the region of ξ > rmax, while for λ = 2.5, ξ < rmax. In
the latter case we clearly see (Fig. 3.4b, λ = 2.5) the (statistical) repetition of
the network beyond the length scale ξ. The different regimes are summarized in
Fig. 3.5.

We now address the geometrical properties of the networks, arising from their
embedding in Euclidean space. To this aim, it is useful to consider the spatial
arrangement of the networks as measured both in an Euclidean metric and in
chemical space. The chemical distance l between any two sites is the length of
the minimal path between them (minimal number of links). Thus if the distance
between the two sites is r, then l ∼ rdmin defines the minimal length exponent
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Fig. 3.4. Spatial structure of connectivity network. Top: shown is the typical map of
links for a system of 50 x 50 sites generated from a degree distributions with λ = 2.5
and λ = 5. Bottom: shown (in different colors) are shells of equidistant sites to the
central one in a lattice of 300 x 300 sites. Note that for λ = 5, shells are concentric and
continuous fractals; but for λ = 2.5, shells are broken

dmin. We will see that dmin < 1 (for d > 1), contrary to all naturally occurring
fractals and disordered media. Sites at chemical distance l from a given site
constitute its l-th chemical shell. The number of (connected) sites within radius
r scales as m(r) ∼ rdf , defining the fractal dimension df . Likewise, the number
of (connected) sites within chemical radius l scales as m(l) ∼ ldl , which defines
the fractal dimension dl in chemical space. The two fractal dimension are related:
dmin = df/dl [13, 42, 43].

To study df , we compute the perimeter S(r), the number of sites that connect
the interior cluster of a region of radius r to sites outside. The fractal dimension
then follows from the scaling relation S(r) ∼ rdf −1. We focus on the regime
ξ > rmax. Consider a shell dr′, of radius r′. A site of connectivity k′ within the
shell is connected to the outside (to a distance larger than r−r′) with probability
P (k′ > ( r−r

′
A )d), (3.55). Thus,

S(r) =
∫ r

0
dr′r′d−1P

(

k′ >
(
r − r′

A

)d
)

∼
{
rd r < A,
c(λ)Ard−1 r > A,

(3.62)
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Fig. 3.5. This diagram shows the six regions where different behavior of the network
is found: for region A: rmax < R < ξ, B: rmax < ξ < R, C: ξ < rmax < R, D:
ξ < R < rmax, E: R < ξ < rmax, F: R < rmax < ξ. The diagram can be mapped into
only four regions where the cutoff kc and where size effect K are expected. A and B:
no cutoff and no size effect; C and D: cutoff and no size effect; E: cutoff and size effect;
F: no cutoff but size effect. The two symbols indicate the parameters corresponding to
Fig. 3.4b, (full diamond) λ = 2.5 and (full circle) λ = 5

where c(λ) ∼ 1+1/[d(λ−1)+1]. In other words, the network is compact, df = d
at large distances r > A, and super-compact, df = d+ 1, at r < A.

In order to compute dmin (or dl), we regard the chemical shells as being
roughly smooth, at least in the regime ξ > rmax, as suggested by Fig. 3.4b
(λ = 5). Let the width of shell l be ∆r(l), then

l =
∫

dl =
∫

dr

∆r(l)
∼ rdmin , (3.63)

since ∆l = 1. The number of sites in shell l, N(l), is, on the one hand, N(l) ∼
r(l)d−1∆r(l). On the other hand, since the maximal connectivity in shell l is
K(l) ∼ N(l)1/(λ−1), the thickness of shell (l+1) is ∆r(l+1) which is determined
by the length of the largest link to the next shell i.e., r[K(l)], and thus, ∆r(l +
1) ∼ r[K(l)] ∼ AK(l)1/d. Assuming (for large l) that ∆r(l + 1) ∼ ∆r(l), we
obtain

∆r(l) ∼ r
d−1

d(λ−1)−1 . (3.64)

Using this expression in (3.63), yields

dmin =
λ− 2

λ− 1 − 1/d
. (3.65)

Thus, above d = 1, the dimensions dmin and dl = df/dmin are anomalous for all
values of λ.

In Fig. 3.6 we plot dmin as measured from simulations, and compared
with the analytical result (3.65). The scaling suggested in Fig. 3.6b, N(l) ∼
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Fig. 3.6. a The minimal length exponent dmin as a function of λ. Note the good
agreement between theoretical estimations (continuous line) and simulations results
(full squares). b The shape of the Φ(ldl/Rd) scaling function is shown for λ = 4 and
several lattice sizes: R=1000 (circle), 2000 (square), 2500 (diamond) and 3000 (triangle)

ldl−1Φ(ldl/Rd), is valid only for ξ > rmax. For R → ∞, we expect that the
network is scale-free up to length scale ξ and the analogous scaling will be
N(l) ∼ ldl−1Ψ(ldl/ξd), where Ψ(x � 1) ∼ x(d−dl)/dl .

Note on the Upper Cutoff

In (3.14) we suggest that the upper cutoff of a scale free network scales as
N1/(λ−1). However, for the spatially embedded graphs we find that no graph
with λ < 3 can be embedded in a lattice without sacrificing the natural cutoff
(see discussion after (3.61)). That is, the cutoff is limited to

√
N . This holds

true for every d. Similar results are indeed obtained for mean field (i.e. non-
embedded) graphs [46], while Warren et al [39] find the natural cutoff even for
graphs embedded in d = 2 lattices.

A possible explanation is in the different method for the network implemen-
tation, which leads to different ensembles. For the non-embedded networks we
allowed every link to lead to every other with an equal probability, thus allo-
wing more than one edge between a pair of sites, and edges leading from a site
to itself which were just ignored. In contrast, in the spatially embedded case
no such connections were allowed. It is plausible that allowing such connections
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Fig. 3.7. The infinite cluster in scale free networks at criticality. The clusters were
generated using a Leath type method, where the nearest available nodes are selected
in each shell

or, alternatively, allowing a deviation from the degree distribution, leads to the
“natural” cutoff, while requiring the exact degree sequence in conjunction with
no such connections influences the ensemble, bringing to an upper cutoff of

√
N ,

due to the high probability of forming such connections when the cutoff is higher.
The limit of K ∼ √

N seems to stem from the fact that the expected number
of edges between two such sites (or self-loops of a single such site) is of order
K2/〈k〉N � 1, which implies that most networks having such high degree sites
will be multigraphs, and therefore this might limit the cutoff. On the other hand,
since degree 1 sites consist of a finite fraction of the links in the network, a finite
fraction of the links of high degree sites will link to them, implying that the tail
of the distribution, and therefore the scaling of the cutoff is not changed, even
when double edges and self loops are removed.

3.3.2 Summary

In summary, we propose a method for embedding scale-free networks in Euc-
lidean lattices. The method is based on a natural principle of minimizing the
total length of links in the system. This principle enables us to embed the scale-
free networks in Euclidean space without additional external exponents. Very
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recently, independently, Manna and Sen [47] and Xulvi-Brunet and Sokolov [48]
suggested a different embedding method in Euclidean space which include an
external exponent. We have shown that while the fractal dimension df of the
network is the same as the Euclidean dimension, the chemical dimension dl > df
for all values of λ, yielding dmin < 1 for all λ and d > 1. A related work by War-
ren, Sander and Sokolov [39], studies some percolation properties of a similar
geographical model. In Fig. 3.7 we show some snapshots of the infinite cluster
at the percolation threshold, for 2d scale free systems with various values of λ.
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Albert-László Barabási1, Erzsébet Ravasz1, and Zoltán Oltvai2

1 Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame,
Notre Dame, IN 46556, USA

2 Department of Pathology, Northwestern University, Chicago, IL 60611, USA

Abstract. Many real networks in nature and society share two generic properties:
they are scale-free and they display a high degree of clustering. We show that the scale-
free nature and high clustering of real networks are the consequence of a hierarchical
organization, implying that small groups of nodes form increasingly large groups in a
hierarchical manner, while maintaining a scale-free topology. In hierarchical networks
the clustering coefficient follows a strict scaling law, which can be used to identify
the presence of a hierarchical organization in real networks. We find that several real
networks, such as the World Wide Web, actor network, the Internet at the domain level
and the semantic web obey this scaling law, indicating that hierarchy is a fundamental
characteristic of many complex systems. We the focus on the metabolic network of
43 distinct organisms and show that many small, highly connected topologic modules
combine in a hierarchical manner into larger, less cohesive units, their number and
degree of clustering following a power law. Within Escherichia Coli we find that the
uncovered hierarchical modularity closely overlaps with known metabolic functions.

4.1 Introduction

The availability of detailed network maps, capturing the topology of such diverse
systems as the cell [1, 2, 3, 4], the world wide web [5], or the sexual network [6],
have offered scientists for the first time the chance to address in quantitative
terms the generic features of real networks (for reviews see [7, 8]). As a result,
we learned that networks are governed by strict organizing principles, that gene-
rate systematic and measurable deviations from the topology predicted by the
random graph theory of Erdős and Rényi [9, 10], the model used to describe
complex webs in the past four decades.

Two properties of real networks have generated considerable attention. First,
many networks display a high degree of clustering, measured by the clustering
coefficient, which for node i with ki links has the value Ci = 2ni/ki(ki−1), where
ni is the number of links between the ki neighbors of i. Empirical results indicate
that Ci averaged over all nodes is significantly higher for many real networks
than for a random network of similar size [11, 7, 8]. Furthermore, the clustering
coefficient of real networks is to a high degree independent of the number of
nodes in the network (see Fig. 9 in [7]). At the same time, many networks of
scientific or technological interest, ranging from the World Wide Web [5] to
biological networks [1, 2, 3, 4] have been found to be scale-free [12, 13], which
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a b

Fig. 4.1. a A schematic illustration of a scale-free network, whose degree distribution
follows a power law. In such a network a few highly connected nodes, or hubs (empty
circles) play an important role in keeping the whole network together. b Schematic
illustration of a manifestly modular network made of four highly interlinked modules
connected to each other by a few links. This intuitive topology does not have a scale-
free degree distribution, as most of its nodes have a similar number of links, and hubs
are absent (After [17])

means that the probability that a node has k links (i.e. degree k) follows

P (k) ∼ k−γ ,

where γ is the degree exponent.
The scale-free property and clustering are not exclusive: for a large num-

ber of real networks, including metabolic networks [1, 2], the protein interaction
network [3, 4], the world wide web [5] and some social networks [14, 15, 16] the
scale-free topology and high clustering coexist. Yet, most models proposed to de-
scribe the topology of complex networks have difficulty capturing simultaneously
these two features. For example, the random network model [9, 10] cannot ac-
count neither for the scale-free, nor for the clustered nature of real networks, as
it predicts an exponential degree distribution, and the average clustering coeffi-
cient, C(N), decreases as N−1 with the number of nodes in the network. Scale-
free networks (Fig. 4.1a), capturing the power law degree distribution, predict
a much larger clustering coefficient than a random network. Indeed, numerical
simulations indicate that for one of the simplest models [12, 13] the average
clustering coefficient depends on the system size as C(N) ∼ N−0.75 [7, 8], sig-
nificantly larger for large N than the random network prediction C(N) ∼ N−1.
Yet, this prediction still disagrees with the finding that for several real systems
C is independent of N [7].

On the biological front, it is now widely recognized that the thousands of
components of a living cell are dynamically interconnected, so that the cell’s
functional properties are ultimately encoded into a complex intracellular web of
molecular interactions [18, 19, 20, 21, 22, 23]. On the other hand, the identifi-
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cation and characterization of system-level features of biological organization is
a key issue of post-genomic biology [24, 18, 19]. The concept of modularity as-
sumes that cellular functionality can be seamlessly partitioned into a collection
of modules. Each module is a discrete entity of several elementary components
and performs an identifiable task, separable from the functions of other modu-
les [24, 20, 21, 22, 25, 23]. Spatially and chemically isolated molecular machines
or protein complexes (such as ribosomes and flagella) are prominent examples
of such functional units, but more extended modules, such as those achieving
their isolation through the initial binding of a signaling molecule [26] are also
apparent.

The dilemma of modular versus highly integrated topology is perhaps most
evident when inspecting cellular metabolism, a fully connected biochemical net-
work in which hundreds of metabolic substrates are densely integrated via bio-
chemical reactions. Within this network, however, modular organization (i.e.,
clear boundaries between sub-networks) is not immediately apparent.

A number of approaches for analyzing the functional capabilities of metabolic
networks clearly indicate the existence of separable functional elements [27, 28].
Also, from a purely topologic perspective the metabolic network of Escherichia
coli is known to possess a high clustering coefficient [2], a property that is sugge-
stive of a modular organization. In itself, this implies that the metabolism of E.
coli has a modular topology, potentially comprising several densely interconnec-
ted functional modules of varying sizes that are connected by few inter-module
links (Fig. 4.1b). However, such clearcut modularity imposes severe restrictions
on the degree distribution, implying that most nodes have approximately the
same number of links, which contrasts with the metabolic network’s scale-free
nature [1, 2]. To determine if such a dichotomy is indeed a generic property of
all metabolic networks we first calculated the average clustering coefficient for
43 different organisms [29] as a function of the number of distinct substrates,
N , present in their metabolism. We find that for all 43 organisms the cluste-
ring coefficient is about an order of magnitude larger than that expected for a
scale-free network of similar size (Fig. 4.2), suggesting that metabolic networks
in all organisms are characterized by a high intrinsic potential modularity. We
also observe that in contrast with the prediction of the scale-free model, for
which the clustering coefficient decreases as N−0.75 [7], the clustering coefficient
of metabolic networks’ is independent of their size (Fig. 4.2).

Here we show that the fundamental discrepancy between models and empi-
rical measurements is rooted in a previously disregarded, yet generic feature of
many real networks, biological and non-biological: their hierarchical topology.
Indeed, in many networks one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no links to nodes outside
of the group to which they belong to. In society such modules represent groups
of friends or coworkers [30]; in the WWW denote communities with shared in-
terests [31, 32]; in the actor network they characterize specific genres or simply
individual movies. Some groups are small and tightly linked, others are larger
and somewhat less interconnected. This clearly identifiable modular organiza-
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Fig. 4.2. The average clustering coefficient, C(N), for 43 organisms [1] is shown as
a function of the number of substrates N present in each of them. Species belonging
to Archae (white star), Bacteria (black circle), and Eukaryotes (white triangle) are
shown. The dashed line indicates the dependence of the clustering coefficient on the
network size for a module-free scale-free network, while the diamonds denote C for a
scale-free network with the same parameters (N and number of links) as observed in
the 43 organisms (After [17])

tion is at the origin of the high clustering coefficient seen in many real networks.
Yet, models reproducing the scale-free property of real networks [7, 8] distin-
guish nodes based only on their degree, and are blind to node characteristics
that could lead to a modular topology.

In order to bring modularity, the high degree of clustering and the scale-free
topology under a single roof, we need to assume that modules combine into each
other in a hierarchical manner, generating what we call a hierarchical network.
The presence of a hierarchy and the scale-free property impose strict restrictions
on the number and the degree of cohesiveness of the different groups present
in a network, which can be captured in a quantitative manner using a scaling
law, describing the dependence of the clustering coefficient on the node degree.
We use this scaling law to identify the presence of a hierarchical architecture
in several real networks, and the absence of such hierarchy in geographically
organized webs.

4.2 Hierarchical Network Model

We start by constructing a hierarchical network model, that combines the scale-
free property with a high degree of clustering. Our starting point is a small
cluster of five densely linked nodes (Fig. 4.3a). Next we generate four replicas of
this hypothetical module and connect the four external nodes of the replicated
clusters to the central node of the old cluster, obtaining a large 25–node module
(Fig. 4.3b). Subsequently, we again generate four replicas of this 25–node mo-
dule, and connect the 16 peripheral nodes to the central node of the old module
(Fig. 4.3c), obtaining a new module of 125 nodes. These replication and connec-
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a n=0, N=5

b n=1, N=25 c n=2, N=125

Fig. 4.3. The iterative construction leading to a hierarchical network. Starting from
a fully connected cluster of five nodes shown in a (note that the diagonal nodes are
also connected – links not visible), we create four identical replicas, connecting the
peripheral nodes of each cluster to the central node of the original cluster, obtaining a
network of N = 25 nodes b. In the next step we create four replicas of the obtained
cluster, and connect the peripheral nodes again, as shown in c, to the central node of
the original module, obtaining a N = 125 node network. This process can be continued
indefinitely (After [33])

tion steps can be repeated indefinitely, in each step increasing the number of
nodes in the system by a factor five.

Precursors to the model described in Fig. 4.3 have been proposed in [34] and
extended and discussed in [35, 36] as a method of generating deterministic scale-
free networks. Yet, it was believed that aside from their deterministic structure,
their statistical properties are equivalent with the stochastic models that are
often used to generate scale-free networks. In the following we argue that such
hierarchical construction generates an architecture that is significantly different
from the networks generated by traditional scale-free models. Most important,
we show that the new feature of the model, its hierarchical character, are shared
by a significant number of real networks.

First we note that the hierarchical network model seamlessly integrates a
scale-free topology with an inherent modular structure. Indeed, the generated
network has a power law degree distribution with degree exponent γ = 1 +
ln 5/ ln 4 = 2.161 (Fig. 4.4a). Furthermore, numerical simulations indicate that
the clustering coefficient, C � 0.743, is independent of the size of the network
(Fig. 4.4c). Therefore, the high degree of clustering and the scale-free property
are simultaneously present in this network.
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Fig. 4.4. Scaling properties of the hierarchical model shown in Fig. 4.3 (N = 57). a The
numerically determined degree distribution. The assymptotic scaling, with slope γ =
1+ln 5/ ln 4, is shown as a dashed line. b The C(k) curve for the model, demonstrating
that it follows (4.1). The open circles show C(k) for a scale-free model [12] of the same
size, illustrating that it does not have a hierarchical architecture. c The dependence of
the clustering coefficient, C, on the size of the network N . While for the hierarchical
model C is independent of N (�), for the scale-free model C(N) decreases rapidly (©)

The most important feature of the network model of Fig. 4.3, not shared by
either the scale-free [12, 13] or random network models [9, 10], is its hierarchical
architecture. The network is made of numerous small, highly integrated five
node modules (Fig. 4.3a), which are assembled into larger 25–node modules
(Fig. 4.3b). These 25–node modules are less integrated but each of them is
clearly separated from the other 25–node modules when we combine them into
the even larger 125–node modules (Fig. 4.3c). These 125–node modules are even
less cohesive, but again will appear separable from their replicas if the network
expands further.

This intrinsic hierarchy can be characterized in a quantitative manner using
the recent finding of Dorogovtsev, Goltsev and Mendes [35] that in deterministic
scale-free networks the clustering coefficient of a node with k links follows the
scaling law

C(k) ∼ k−1 . (4.1)

We argue that this scaling law quantifies the coexistence of a hierarchy of
nodes with different degrees of clustering, and applies to the model of Fig. 4.3a–c
as well. Indeed, the nodes at the center of the numerous 5–node modules have
a clustering coefficient C = 1. Those at the center of a 25–node module have
k = 20 and C = 3/19, while those at the center of the 125–node modules have
k = 84 and C = 3/83, indicating that the higher a node’s degree the smaller
is its clustering coefficient, asymptotically following the 1/k law (Fig. 4.4b). In
contrast, for the scale-free model proposed in [12] the clustering coefficient is
independent of k, i.e. the scaling law (4.1) does not apply (Fig. 4.4b). The same
is true for the random [9, 10] or the various small world models [11, 37], for
which the clustering coefficient is independent of the nodes’ degree.
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Therefore, the discrete model of Fig. 4.3 combines within a single framework
the two key properties of real networks: their scale-free topology and high mo-
dularity, which results in a system-size independent clustering coefficient. Yet,
the hierarchical modularity of the model results in the scaling law (4.1), which is
not shared by the traditional network models. The question is, could hierarchical
modularity, as captured by this model, characterize real networks as well?

4.3 Hierarchical Organization in Non-biological Networks

To investigate if such hierarchical organization is present in real networks we
measured the C(k) function for several networks for which large topological
maps are available. Next we discuss each of these systems separately.

Actor Network: Starting from the www.IMDB.com database, we connect any
two actors in Hollywood if they acted in the same movie, obtaining a network of
392,340 nodes and 15,345,957 links. Earlier studies indicate that this network is
scale-free with an exponential cutoff in P (k) for high k [12, 38, 39]. As Fig. 4.5a

10
0

10
1

10
2

10
3

10
4

k

10
−2

10
−1

10
0

C
(k

)

(a)

1 10 100
k

10
−1

10
0

C
(k

)

(b)

10
0

10
1

10
2

10
3

10
4

k

10
−4

10
−3

10
−2

10
−1

10
0

C
(k

)

(c)

10
0

10
1

10
2

10
3

k

10
−3

10
−2

10
−1

10
0

C
(k

)

(d)

Fig. 4.5. The scaling of C(k) with k for four large networks: a Actor network, two
actors being connected if they acted in the same movie according to the www.IMDB.com
database. b The semantic web, connecting two English words if they are listed as
synonyms in the Merriam Webster dictionary [41]. c The World Wide Web, based
on the data collected in [5]. d Internet at the Autonomous System level, each node
representing a domain, connected if there is a communication link between them. The
dashed line in each figure has slope −1, following (4.1) (After [33])
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indicates, we find that C(k) scales as k−1, indicating that the network has a
hierarchical topology. Indeed, the majority of actors with a few links (small k)
appear only in one movie. Each such actor has a clustering coefficient equal
to one, as all actors the actor has links to are part of the same cast, and are
therefore connected to each other. The high k nodes include many actors that
acted in several movies, and thus their neighbors are not necessarily linked to
each other, resulting in a smaller C(k). At high k the C(k) curve splits into two
branches, one of which continues to follow (4.1), while the other saturates. One
explanation of this split is the decreasing amount of datapoints available in this
region. Indeed, in the high k region the number of nodes having the same k is
rather small. If one of these nodes corresponds to an actor that played only in
a few movies with hundreds in the cast, it will have both high k and high C,
considerably increasing the average value of C(k). The k values for which such
a high C nodes are absent continue to follow the k−1 curve, resulting in jumps
between the high and small C values for large k. For small k these anomalies are
averaged out.

Language network: Recently a series of empirical results have shown that
the language, viewed as a network of words, has a scale-free topology [40, 41,
42, 43]. Here we study the network generated connecting two words to each
other if they appear as synonyms in the Merriam Webster dictionary [41]. The
obtained semantic web has 182,853 nodes and 317,658 links and it is scale-free
with degree exponent γ = 3.25. The C(k) curve for this language network is
shown in Fig. 4.5b, indicating that it follows (4.1), suggesting that the language
has a hierarchical organization.

World Wide Web: On the WWW two documents are connected to each other
if there is an URL pointing from one document to the other one. The sample
we study, obtained by mapping out the www.nd.edu domain [5], has 325,729
nodes and 1,497,135 links, and it is scale-free with degree exponents γout = 2.45
and γin = 2.1, characterising the out and in-degree distribution, respectively. To
measure the C(k) curve we made the network undirected. While the obtained
C(k), shown in Fig. 4.5c, does not follow as closely the scaling law (4.1) as ob-
served in the previous two examples, there is clear evidence that C(k) decreases
rapidly with k, supporting the coexistence of many highly interconnected small
nodes with a few larger nodes, which have a much lower clustering coefficient.

Indeed, the Web is full of groups of documents that all link to each other.
For example, www.nd.edu/∼networks, our network research dedicated site, has
a high clustering coefficient, as the documents it links to have links to each
other. The site is one of the several network-oriented sites, some of which point
to each other. Therefore, the network research community still forms a relati-
vely cohesive group, albeit less interconnected than the www.nd.edu/∼networks
site, thus having a smaller C. This network community is nested into the much
larger community of documents devoted to statistical mechanics, that has an
even smaller clustering coefficient. Therefore, the k–dependent C(k) reflects the
hierarchical nesting of the different interest groups present on the Web. Note
that C(k) ∼ k−1 for the WWW was observed and briefly noted in [44].
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Internet at the AS Level: The Internet is often studied at two different levels
of resolution. At the router level we have a network of routers connected by
various physical communication links. At the interdomain or autonomous system
(AS) level each administrative domain, composed of potentially hundreds of
routers, is represented by a single node. Two domains are connected if there is
at least one router that connects them. Both the router and the domain level
topology have been found to be scale-free [45]. As Fig. 4.5d shows, we find that
at the domain level the Internet, consisting of 65,520 nodes and 24,412 links
[46], has a hierarchical topology as C(k) is well approximated with (4.1). The
scaling of the clustering coefficient with k for the Internet was earlier noted
by Vazquez, Pastor-Satorras and Vespignani (VPSV) [47, 48], who observed
C(k) ∼ k−0.75. VPSV interpreted this finding, together with the observation
that the average nearest-neighbor connectivity also follows a power-law with the
node’s degree, as a natural consequence of the stub and transit domains, that
partition the network in a hierarchical fashion into international connections,
national backbones, regional networks and local area networks.

Our measurements indicate, however, that some real networks lack a hierar-
chical architecture, and do not obey the scaling law (4.1). In particular, we find
that the power grid and the router level Internet topology have a k independent
C(k).

Internet at the Router Level: The router level Internet has 260,657 nodes
connected by 1,338,100 links [49]. Measurements indicate that the network is
scale-free [45, 50] with degree exponent γ = 2.23. Yet, the C(k) curve (Fig. 4.6a),
apart from some fluctuations, is largely independent of k, in strong contrast with
the C(k) observed for the Internet’s domain level topology (Fig. 4.5d), and in
agreement with the results of VPSV [47, 48], who also note the absence of a
hierarchy in router level maps.
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Fig. 4.6. The scaling of C(k) for two large, non-hierarchical networks: a Internet at
router level [49]. b The power grid of Western United States. The dashed line in each
figure has slope −1, while the solid line corresponds to the average clustering coefficient
(After [33])
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Power Grid: The nodes of the power grid are generators, transformers and
substations and the links are high voltage transmission lines. The network stu-
died by us represents the map of the Western United States, and has 4,941 nodes
and 13,188 links [11]. The results again indicate that apart from fluctuations,
C(k) is independent of k.

It is quite remarkable that these two networks share a common feature: a
geographic organization. The routers of the Internet and the nodes of the power
grid have a well defined spatial location, and the link between them represent
physical links. In contrast, for the examples discussed in Fig. 4.5 the physical
location of the nodes was either undefined or irrelevant, and the length of the link
was not of major importance. For the router level Internet and the power grid
the further are two nodes from each other, the more expensive it is to connect
them [50]. Therefore, in both systems the links are driven by cost considerations,
generating a distance driven structure, apparently excluding the emergence of
a hierarchical topology. In contrast, the domain level Internet is less distance
driven, as many domains, such as the AT&T domain, span the whole United
States.

In summary, we offered evidence that for four large networks C(k) is well
approximated by C(k) ∼ k−1, in contrast to the k–independent C(k) predicted
by both the scale-free and random networks. In addition, there is evidence for
similar scaling in the metabolism [17] and protein interaction networks [51].
This indicates that these networks have an inherently hierarchical organization.
In contrast, hierarchy is absent in networks with strong geographical constraints,
as the limitation on the link length strongly constraints the network topology.

4.4 Hierarchy in Metabolic Networks and the Functional
Organization of Escherichia Coli

To investigate if hierarchical organization is present in cellular metabolism we
measured the C(k) function for the metabolic networks of all 43 organisms. As
shown in Fig. 4.7, for each organism C(k) is well approximated by C(k) ∼ k−1,
in contrast to the k–independent C(k) predicted by both the scale-free and
modular networks. This provides direct evidence for an inherently hierarchical
organization.

A key issue from a biological perspective is whether the identified hierarchi-
cal architecture reflects the true functional organization of cellular metabolism.
To uncover potential relationships between topological modularity and the fun-
ctional classification of different metabolites we concentrate on the metabolic
network of Escherichia coli, whose metabolic reactions have been exhaustively
studied, both biochemically and genetically [52].

Using a previously established graph-theoretical representation [1], we first
subjected E. coli ’s metabolic organization to a three step reduction process,
replacing non-branching pathways with equivalent links, allowing us to decrease
its complexity without altering the network topology [54]. Next, we calculated
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Fig. 4.7. The dependence of the clustering coefficient on the node’s degree in three or-
ganisms: a Aquidex Aeolicus (archaea), b Escherichia Coli (bacterium), c and Saccha-
romices cerevisiae (eukaryote). In d the C(k) curves averaged over all 43 organisms are
shown, while the inset displays all 43 species together. The dashed lines correspond to
C(k) ∼ k−1, and in a–c the diamonds represent C(k) expected for a scale-free network
(Fig. 4.1a) of similar size, indicating the absence of scaling. The wide fluctuations are
due to the small size of the network (After [17])

the topological overlap matrix, OT(i, j), of the condensed metabolic network
(Fig. 4.8). A topological overlap of one between substrates i and j implies that
they are connected to the same substrates, while a zero value indicates that i
and j do not share links to common substrates among the metabolites they react
with.

The metabolites that are part of highly integrated modules have a high to-
pological overlap with their neighbors, and we find that the larger the overlap
between two substrates within the E. coli metabolic network the more likely it
is that they belong to the same functional class.

As the topological overlap matrix is expected to encode the comprehensive
functional relatedness of the substrates forming the metabolic network, we inve-
stigated whether potential functional modules encoded in the network topology
can be uncovered automatically. Initial application of an average-linkage hierar-
chical clustering algorithm [53] to the overlap matrix of the small hypothetical
network shown in Fig. 4.8a placed those nodes that have a high topological over-
lap close to each other (Fig. 4.8b). Also, the method has clearly identified the
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Fig. 4.8. a Topological overlap illustrated on a small hypothetical network. For each
pair of nodes, i and j, we define the topological overlap OT(i, j) = Jn(i, j)/[min(ki, kj)+
1−L(i, j)], where Jn(i, j) denotes the number of nodes to which both i and j are linked
to plus L(i, j), which is one if there is a direct link between i and j, zero otherwise,
and min(ki, kj) is the smaller of the ki and kj degrees. On each link we indicate the
topological overlap for the connected nodes and in parenthesis next to each node we
indicate it’s clustering coefficient. b The topological overlap matrix corresponding to
the small network shown in a. The rows and columns of the matrix were reordered by
the application of an average linkage clustering method [53] to its elements, allowing us
to identify and place close to each other those nodes that have high topological over-
lap. The color code denotes the degree of topological overlap between the nodes (see
sidebar). The associated tree clearly reflects the three distinct modules built into the
model of a, as well as the fact that the EFG and HIJK modules are closer to each other
in topological sense that the ABC module. c The topologic overlap matrix correspon-
ding to the E. coli metabolism, together with the corresponding hierarchical tree (top)
that quantifies the relationship between the different modules. The branches of the
tree are color coded to reflect the functional classification of their substrates. The bio-
chemical classes we used to group the metabolites represent carbohydrate metabolism
(blue), nucleotide and nucleic acid metabolism (red), protein, peptide and amino acid
metabolism (green), lipid metabolism (cyan), aromatic compound metabolism (dark
pink), monocarbon compound metabolism (yellow) and coenzyme metabolism (light
orange) [29]. The color code of the matrix denotes the degree of topological overlap
shown in the matrix. On the bottom we show the large-scale functional map of the
metabolism, as suggested by the hierarchical tree (After [17])
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Fig. 4.9. 3-D representation of the reduced E. coli metabolic network. Each node is
color coded by the functional class to which it belongs, and is identical to the color code
applied to the branches of the tree shown in Fig. 4.8c. Note that the different functional
classes are visibly segregated into topologically distinct regions of metabolism. The
blue-shaded region denotes the nodes belonging to pyrimidine metabolism, discussed
below (After [17])

three distinct modules built into the model of Fig. 4.8a, as illustrated by the
fact that the EFG and HIJK modules are closer to each other in a topological
sense than the ABC module (Fig. 4.8b).

Application of the same technique on the E. coli overlap matrix OT (i, j) pro-
vides a global topologic representation of E. coli metabolism (Fig. 4.8c). Groups
of metabolites forming tightly interconnected clusters are visually apparent, and
upon closer inspection the hierarchy of nested topologic modules of increasing
sizes and decreasing interconnectedness are also evident. To visualize the relati-
onship between topological modules and the known functional properties of the
metabolites, we color coded the branches of the derived hierarchical tree accor-
ding to the predominant biochemical class of the substrates it produces, using the
standard, small molecule biochemistry based classification of metabolism [29].

As shown in Fig. 4.8c, and in the three dimensional representation in Fig. 4.9,
we find that most substrates of a given small molecule class are distributed on the
same branch of the tree (Fig. 4.8c) and correspond to relatively well-delimited
regions of the metabolic network (Fig. 4.9). Therefore, there are strong corre-
lations between shared biochemical classification of metabolites and the global
topological organization of E. coli metabolism (Fig. 4.8c, bottom, and [54]).
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Fig. 4.10. A detailed diagram of the metabolic reactions that surround and incorporate
the pyrimidine metabolic module. Red boxes denote the substrates directly appearing
in the reduced metabolism and the tree shown in Fig. 4.9. Substrates in green boxes are
internal to pyrimidine metabolism, but represent members of non-branching pathways
or end pathways branching from a metabolite with multiple connections [54]. Blue
and black boxes show the connections of pyrimidine metabolites to other parts of the
metabolic network. Black boxes denote core substrates belonging to other branches
of the metabolic tree Fig. 4.8c, while blue boxes denote non-branching pathways (if
present) leading to those substrates. The shaded boxes around the reactions highlight
the modules suggested by the hierarchical tree. The shaded blue boxes along the links
display the enzymes catalyzing the corresponding reactions, and the arrows show the
direction of the reactions according to the WIT metabolic maps [29]. (After [17])

To correlate the putative modules obtained from our graph theory-based ana-
lysis to actual biochemical pathways, we concentrated on the pathways involving
the pyrimidine metabolites. Our method divided these pathways into four pu-
tative modules (Fig. 4.10a), which represent a topologically well-limited area of
E. coli metabolism (Fig. 4.9, circle).

As shown in Fig. 4.10b, all highly connected metabolites (Fig. 4.10b, red
boxes) correspond to their respective biochemical reactions within pyrimidine
metabolism, together with those substrates that were removed during the origi-
nal network reduction procedure, and then re-added (Fig. 4.10b, green boxes).
However, it is also apparent that putative module boundaries do not always
overlap with intuitive ‘biochemistry-based’ boundaries. For instance, while the
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synthesis of UMP from L-glutamine is expected to fall within a single module
based on a linear set of biochemical reactions, the synthesis of UDP from UMP
leaps putative module boundaries. Thus, further experimental and theoretical
analyses will be needed to understand the relationship between the decompo-
sition of E. coli metabolism offered by our topology-based approach, and the
biologically relevant sub-networks.

The organization of metabolic networks is likely to combine a capacity for
rapid flux reorganization with a dynamic integration with all other cellular fun-
ction [2]. Our results indicate that the system-level structure of cellular metabo-
lism is best approximated by a hierarchical network organization with seamles-
sly embedded modularity. In contrast to current, intuitive views of modularity
(Fig. 4.1b) which assume the existence of a set of modules with a non-uniform
size potentially separated from other modules, we find that the metabolic net-
work has an inherent self-similar property: there are many highly integrated
small modules, which group into a few larger modules, which in turn can be
integrated into even larger modules. This is supported by visual inspection of
the derived hierarchical tree (Fig. 4.8c), which offers a natural breakdown of me-
tabolism into several large modules, which are further partitioned into smaller,
but more integrated sub-modules.

4.5 Stochastic Model and Universality

The hierarchical model described in Fig. 4.3 predicts C(k) ∼ k−1, which offers
a rather good fit to three of the four C(k) curves shown in Fig. 4.5. The que-
stion is, is this scaling law (4.1) universal, valid for all hierarchical networks, or
could different scaling exponent characterize the scaling of C(k)? Defining the
hierarchical exponent, β, as

C(k) ∼ k−β , (4.2)

is β = 1 a universal exponent, or it’s value can be changed together with γ?
In the following we demonstrate that the hierarchical exponent β can be tuned
as we tune some of the network parameters. For this we propose a stochastic
version of the model described in Fig. 4.3.

We start again with a small core of five nodes all connected to each other
(Fig. 4.3a) and in step one (n = 1) we make four copies of the five node module.
Next, we randomly pick a p fraction of the newly added nodes and connect each
of them independently to the nodes belonging to the central module. We use
preferential attachment [12, 13] to decide to which central node the selected
nodes link to. That is, we assume that the probability that a selected node will
connect to a node i of the central module is ki/

∑
j kj , where ki is the degree of

node i and the sum goes over all nodes of the central module. In the second step
(n = 2) we again create four identical copies of the 25–node structure obtained
thus far, but we connect only a p2 fraction of the newly added nodes to the
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Fig. 4.11. The scaling properties of the stochastic model. a The degree distribution for
different p values, indicating that P (k) follows a power law with a p dependent slope.
b The dependence of the degree exponent γ on p, determined by fitting power laws to
the curves shown in a. The exponent γ appears to follow approximately γ(p) ∼ 1/p
(dashed line). c The C(k) curve for different p values, indicating that the hierarchical
exponent β depends on p. d The dependence of β on the parameter p. The simulations
were performed for N = 57(78,125) nodes (After [33])

central module. Subsequently, in each iteration n the central module of size 5n

is replicated four times, and in each new module a pn fraction will connect to
the current central module, requiring the addition of (5p)n new links.

As Fig. 4.11 shows, changing p alters the slope of both P (k) and C(k) on
a log–log plot. In general, we find that increasing p decreases the exponents γ
and β (Fig. 4.11b,d). The exponent β = 1 is recovered for p = 1, i.e. when all
nodes of a module gain a link. While the number of links added to the network
changes at each iteration, for any p ≤ 1 the average degree of the infinitely large
network is finite. Indeed, the average degree follows

〈k〉n =
8
5

(
3
2

+
1 − pn+1

1 − p

)

, (4.3)

which is finite for any p ≤ 1.
Interestingly, the scaling of C(k) is not a unique property of the model di-

scussed above. A version of the model, where we keep the fraction of selected
nodes, p, constant from iteration to iteration, also generates p dependent β and
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γ exponents. Furthermore, recently several results indicate that the scaling of
C(k) is an intrinsic feature of several existing growing networks models. Indeed,
aiming to explain the potential origin of the scaling in C(k) observed for the
Internet, VSPV note that the fitness model [55, 56] displays a C(k) that ap-
pears to scale with k. While there is no analytical evidence for C(k) ∼ k−β yet,
numerical results [47, 48] suggest that the presence of fitness does generate a
hierarchical network architecture. In contrast, in a recent model proposed by
Klemm and Eguiluz there is analytical evidence that the network obeys the sca-
ling law (4.1) [57]. In their model in each time step a new node joins the network,
connecting to all active nodes in the system. At the same time an active node
is deactivated with probability p ∼ k−1. The insights offered by the hierarchical
model can help understand the origin of the observed C(k) ∼ k−1. By deac-
tivating the less connected nodes a central core emerges to which all subsequent
nodes tend to link to. New nodes have a large C and small k, thus they are
rapidly deactivated, freezing into a large C state. The older, more connected,
surviving nodes are in contact with a large number of nodes that have already
disappeared from the active list, and they have small C3.

Finally, Szabó, Alava and Kertész have developed a rate equation method to
systematically calculate C(k) for evolving networks models [59]. Applying the
method to a model proposed by Holme and Kim [60] to enhance the degree of
clustering coefficient C seen in the scale-free model [12], they have shown that
the scaling of C(k) depends on the parameter p, which governs the rate at which
new nodes connect to the neighbors of selected nodes, bypassing preferential
attachment. As for p = 0 the Holme–Kim model reduces to the scale-free model,
Szabó, Alava and Kertész find that in this limit the scaling of C(k) vanishes.
These models indicate that several microscopic mechanisms could generate a
hierarchical topology, just as several models are able to create a scale-free net-
work [7, 8].

4.6 Discussion and Outlook

The identified hierarchical architecture offers a new perspective on the topology
of complex networks. Indeed, the fact that many large networks are scale-free is
now well established. It is also clear that most networks have a modular topology,
quantified by the high clustering coefficient they display. Such modules have
been proposed to be a fundamental feature of biological systems [24, 17], but
have been discussed in the context of the WWW [61, 31], and social networks as
well [30, 62]. The hierarchical topology offers a new avenue for bringing under a
single roof these two concepts, giving a precise and quantitative meaning for the
network’s modularity. It indicates that we should not think of modularity as the

3 Note, however, that as new nodes tend to connect to nodes that were added to
the network shortly before them, the model generates a close to one dimensional
structure in time. See e.g. [58]



4 Hierarchical Organization of Modularity in Complex Networks 63

coexistence of relatively independent groups of nodes. Instead, we have many
small clusters, that are densely interconnected. These combine to form larger,
but less cohesive groups, which combine again to form even larger and even less
interconnected clusters. This self-similar nesting of different groups or modules
into each other forces a strict fine structure on real networks.

For biological systems hierarchical modularity is consistent with the notion
that evolution may act at many organizational levels simultaneously: the accu-
mulation of many local changes, that affect the small, highly integrated modu-
les, could slowly impact the properties of the larger, less integrated modules.
The emergence of the hierarchical topology via copying and reusing existing
modules [24] and motifs [23], a process reminiscent of the results of gene du-
plication [63, 64], offers a special role to the modules that appeared first in
the network. While the model of Fig. 4.4 reproduces the large-scale features of
the metabolism, understanding the evolutionary mechanism that explains the si-
multaneous emergence of the observed hierarchical and scale-free topology of the
metabolism, and its generality to cellular organization, is now a prime challenge.

Most interesting is, however, the fact that the hierarchical nature of these
networks is well captured by a simple quantity, the C(k) curve, offering us a
relatively straightforward method to identify the presence of hierarchy in real
networks. The law (4.1) indicates that the number and the size of the groups of
different cohesiveness is not random, but follow rather strict scaling laws.

The presence of such a hierarchical architecture reinterprets the role of the
hubs in complex networks. Hubs, the highly connected nodes at the tail of the
power law degree distribution, are known to play a key role in keeping complex
networks together, playing a crucial role from the robustness of the network [65,
66] to the spread of viruses in scale-free networks [67]. Our measurements indicate
that the clustering coefficient characterizing the hubs decreases linearly with the
degree. This implies that while the small nodes are part of highly cohesive,
densely interlinked clusters, the hubs are not, as their neighbors have a small
chance of linking to each other. Therefore, the hubs play the important role
of bridging the many small communities of clusters into a single, integrated
network.

In many ways our study offers only a starting point for understanding the in-
terplay between the scale-free, hierarchical and modular nature of real networks.
While the C(k) curves offer a tool to unearth the presence of a hierarchy, it is
unclear what are the minimal ingredients at the model level for such a hierarchy
to emerge. Finally, the role of the geometrical factor, which appears to remove
the hierarchy, needs to be elucidated. Further modeling and empirical studies
should allow us to address these questions.
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Abstract. Common experience suggests that many networks might possess commu-
nity structure – division of vertices into groups, with a higher density of edges within
groups than between them. Here we describe a new computer algorithm that detects
structure of this kind. We apply the algorithm to a number of real-world networks and
show that they do indeed possess non-trivial community structure. We suggest a possi-
ble explanation for this structure in the mechanism of assortative mixing, which is the
preferential association of network vertices with others that are like them in some way.
We show by simulation that this mechanism can indeed account for community struc-
ture. We also look in detail at one particular example of assortative mixing, namely
mixing by vertex degree, in which vertices with similar degree prefer to be connected
to one another. We propose a measure for mixing of this type which we apply to a
variety of networks, and also discuss the implications for network structure and the
formation of a giant component in assortatively mixed networks.

5.1 Introduction

Much of the recent research on the structure of networks of various kinds has
looked at properties like path lengths, transitivity, degree distributions, and resi-
lience of networks to vertex deletion [42, 2, 15], all of which, while of exceptional
importance in many contexts, tend to focus our attention on the properties of
individual vertices or vertex pairs – how far apart they are, what their degrees
are, and so forth. However, in other contexts it may be equally important to ask
about the large-scale properties of the network as a whole. Numbers of compo-
nents and their distribution of sizes would be an example of such a property, one
which is relevant to issues of accessibility [10] and to epidemiology [18, 7, 31].
Searchability and the performance of search algorithms on networks would be
another [25, 1, 45]. A third is the existence and effects of large-scale inhomo-
geneity in networks – what we call “community structure”, the presence (or
absence) in the network of regions with high densities of connections between
vertices and other regions with low densities – and it is with a discussion of
this topic that we begin this paper. (In some circles, this phenomenon is cal-
led “clustering”, an unfortunate terminology which risks confusion with another
use of the word clustering introduced recently by Watts and Strogatz [46]. We
will use the word clustering only in reference to hierarchical clustering, which
is a standard technique for community detection; otherwise we will avoid it.)

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 66–87, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



5 Mixing Patterns and Community Structure in Networks 67

Our investigation of community structure will lead us to consideration of mixing
patterns in networks – which vertices connect to which others and why – as an
explanation for observed communities in networks of all kinds, and eventually to
consideration of more general classes of correlated networks including networks
with correlations between the degrees of adjacent vertices.

Much of the work reported in this article has appeared previously in various
papers, which the reader may like to consult for more detail than we can give
here [17, 35, 36].

5.2 Community Structure

The oldest studies by far of the large-scale statistical properties of networks are
the studies of social networks carried out within the sociological community,
which stretch back at least to the 1930s [44, 41]. Social networks are network
representations of relationships of some kind, generically called “ties”, between
people or groups of people, generically called “actors”. Actors might be individu-
als, organizations or companies, while ties might represent friendship, acquain-
tance, business relationships or financial transactions, amongst other things.

A long-standing goal among social network analysts has been to find ways
of analysing network data to reveal the structure of the underlying communities
that they represent. It is commonly supposed that the actors in most social
networks divide themselves naturally into groups of some kind, such that the
density of ties within groups is higher than the density of ties between them. A
sketch of a network with such community structure is shown in Fig. 5.1.

It is a matter of common experience that social networks do contain commu-
nities. We look around ourselves and see that we belong to this clique or that,
that we have a circle of close friends and others whom we know less well, that
there are groupings within our personal networks on the basis of interest, occu-

Fig. 5.1. A figurative sketch of a network possessing community structure of the type
discussed here
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pation, geographical location and so forth. This does not however guarantee that
a network contains community structure of type that we are considering here. It
would be perfectly possible for each person in a network to have a well-defined
set of close acquaintances, their own personal network neighbourhood, but for
the network neighbourhoods of different people to overlap only partially, so that
the network as a whole is quite homogeneous, with no clear communities emer-
ging from the pattern of vertices and edges. A network model showing precisely
this type of structure has been proposed and studied recently by Kleinberg [26].
Our purpose in this section will be to investigate methods for detecting whether
true community structure does exist in networks and for extracting the commu-
nities, and to apply those methods to particular networks. As we will see, the
early intuition of the sociologists was correct, and many of the networks studied,
including non-social networks, do possess large-scale inhomogeneity of precisely
the type that would indicate the presence of community divisions.

The problem then is to take a network, specified in the simplest case by a list
of n vertices joined in pairs bym edges, and from this structure to extract a set of
communities – non-overlapping subsets of vertices that are, in some sense, tightly
knit, having stronger within-group connections than between-group connections.
The traditional, and still most common, method for detecting structure of this
kind is the method of “hierarchical clustering” [44, 41]. In this method one defi-
nes a connection strength for each pair of vertices in the network, i.e., 1

2n(n− 1)
numbers that represent a distance or weight for the connection between each
pair. (In some versions of the method not all pairs are assigned a connection
strength, in which case those that are not can be assumed to have a connection
strength of zero.) Examples of possible definitions for the strengths include ge-
odesic (shortest path) distances between pairs, or their inverses if one wants a
measure that increases when pairs are more closely connected, counts of num-
bers of vertex- or edge-independent paths between pairs (“maxflow” methods)
or weighted counts of total numbers of paths between pairs (adjacency matrix
methods).

Then, starting with the n vertices but no edges between them, one joins
vertices together in order of the weights of vertex pairs, ignoring the edges of
the original network. One can pause at any stage in this process and observe
the pattern of components formed by the connections added so far, which are
taken to be the communities of the network at that stage. The heirarchical
clustering method thus defines not just a single decomposition of the network
into communities, but a nested hierarchy of possible decompositions, having
varying numbers of communities. This hierarchy can be represented as a tree
or “dendrogram”, an example of which is shown in Fig. 5.2. A horizontal cut
through the dendrogram at any given height, such as that denoted by the dotted
line in Fig. 5.2, splits the tree into the communities for the corresponding stage
in the hierarchical clustering process. By varying the height of the cut, one can
arrange for the number communities to take any desired value.

The construction of dendrograms is a popular technique for the analysis of
network data, particularly within the sociological community. Software packa-
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Fig. 5.2. An example of a dendrogram showing the hierarchical clustering of ten
vertices. A horizontal cut through the dendrogram, such as that denoted by the dotted
line, splits the vertices into a set of communities, five in this case

ges for network analysis, such as Pajek and UCInet, incorporate hierarchical
clustering as a standard feature: for any network one can calculate a huge va-
riety of vertex–vertex weights of different types and construct the corresponding
dendrogram for any of them. The method however has some problems. There
are many cases in which networks have rather obvious community structure, but
hierarchical clustering fails to find it. One particular pathology that is frequently
observed is that peripheral vertices tend to get disconnected from the bulk of
the network, rather than being associated with the groups or communities that
they are primarily attached to. For example, if a vertex is connected to the rest
of the network by only a single edge, then presumably, were one to assign it to
a community, it would be assigned to the community that the single edge leads
to. In many cases, however, the hierarchical clustering method will declare the
vertex instead to be a single-vertex community in its own right, in complete
disagreement with our intuitive ideas of community structure.

In a recent paper therefore [17] we have proposed an alternative method for
detecting community structure, based on calculations of so-called edge betweenn-
ess for vertex pairs. As we will see, this method detects the known community
structure in a number of networks with remarkable accuracy.

5.2.1 Edge Betweenness and Community Detection

Freeman [16] proposed a measure of centrality for the actors in a social network
which he called “betweenness”. The betweenness of an actor is defined to be the
number of shortest paths between pairs of vertices that pass through that actor.
In cases where the number p of shortest paths between a vertex pair is greater
than one, each path is given an equal weight of 1/p. Trivial algorithms for calcu-
lating betweenness take O(mn2) time to calculate betweenness for all vertices,
or O(n3) time on a sparse graph (i.e., one in which the number of edges per
vertex is constant in the limit of large graph size). This makes the calculation
prohibitively costly on large networks. Recently however, two new algorithms
have been proposed [33, 9] that both allow the same calculation to be performed
faster, in time O(mn), or O(n2) on a sparse graph, by eliminating needless re-
calculations of geodesic paths. The betweenness of a vertex gives an indication,
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as the name implies, of how much the vertex is “between” other vertices. If, for
example, information (or anything else) spreads through a network primarily by
following shortest paths, then betweenness scores will indicate through which
vertices most information will flow on average. The vertices with highest bet-
weenness are also those whose removal will result in an increase to the geodesic
distance between the largest number of other vertex pairs.

Here we consider an extension of Freeman’s betweenness to the edges in a
network. The betweenness of an edge is defined to be the number of shortest
paths between pairs of vertices that run along that edge, with paths again being
given weights 1/p when there are p > 1 between a given pair of vertices. In
fact, the concept of edge betweenness actually appears to predate Freeman’s
work on vertex betweenness, having appeared in an obscure technical report
by an Amsterdam mathematician some years earlier [4]. Edge betweenness has
received very little attention in other literature until recently, but it provides
us with an excellent measure of which edges in a network lie between different
communities. In a network with strong community structure – groups of vertices
with only a few inter-group edges joining them – at least some of the inter-
group edges will necessarily receive high edge betweenness scores, since they must
carry the geodesic paths between vertex pairs that lie in different communities.
This implies that eliminating edges with high edge betweenness from a graph
will remove the inter-group edges, and hence split the graph efficiently into its
different groups. This is the principle behind our method for the detection of
community structure. Our algorithm is as follows.

1. We calculate the edge betweenness of every edge in the network.
2. We remove the edge with the highest betweenness score, or randomly choose

one such if more than one edge ties for the honour.
3. We recalculate betweenness scores on the resulting network and repeat from

step 2 until no edges remain.

The recalculation in step 3 is crucial to the method’s success. When there is
more than one inter-group edge between two groups of vertices, there is no
guarantee that both will receive high betweenness scores; in some cases most
geodesic paths with flow along one edge and only that one will receive a high
score. Recalculation ensures that at some stage in the working of the algorithm
each inter-group edge receives a high score and thus gets removed.

The calculation of all edge betweennesses takes time O(mn), and its re-
petition for all m edges thus gives the algorithm a worst-case running time
of O(m2n), or O(n3) on a sparse graph. The results of the algorithm can be
represented as a dendrogram, just as in traditional hierarchical clustering, alt-
hough one should be aware that the construction of the tree is not logically
the same: the recalculation of the betweennesses after each edge removal means
that there is no single function that can be defined for each edge in the initial
graph such that the resulting dendrogram is the representation of a hierarchical
clustering construction carried out using that function.
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5.2.2 Examples

Here we give three examples of the application of our community structure fin-
ding algorithm to different networks. The first example is a set of computer
generated graphs, specifically created to test the algorithm. We created a large
number of graphs of 128 vertices each, divided into four groups of 32. Edges were
placed at random between vertices within the same group with probability pin
and between vertices in different groups with probability pout, with the values
of pin and pout chosen to make the average degree of a vertex equal to 16, and
pout ≤ pin. These graphs were then fed into our community structure algorithm,
and we measured what fraction of the vertices were correctly classified into their
communities as a function of the ratio of pin to pout, or equivalently the mean
number zout of edges from a vertex to vertices in other communities. The results
are shown in Fig. 5.3. As the figure shows, the algorithm performs almost per-
fectly for values of zout up to about 6. Beyond this point, as zout approaches the
value of 8 at which each vertex has as many inter-group edges as intra-group
ones, the fraction of successfully classified vertices falls off sharply.

On the same plot we also show the performance of a standard hierarchical
clustering algorithm based on edge-independent path counts (maxflow) on the
same set of random graphs. As the figure shows, the traditional method is far
inferior to our new algorithm in finding the known community structure.
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Fig. 5.3. The fraction of vertices correctly classified in applications of community
structure finding algorithms to the computer-generated graphs described in the text.
The circles are results for the method presented in this paper and the squares are for the
standard hierarchical clustering method, using a maximum-flow measure of connection
strength between vertex pairs. Each point is an average over 100 realizations of the
graphs



72 M.E.J. Newman and M. Girvan

Fig. 5.4. a The friendship network given by Zachary [49] for his karate club study.
Grey squares represent individuals who in the fission of the club sided with the club’s
instructor, while open circles represent individuals who sided with the club’s president.
b The dendrogram representing the community divisions found by our method for this
network, with the same colouring scheme for the vertices

For our second example, we move to real-world network data. In 1977, Wayne
Zachary published the results of an ethnographic study he had conducted of
social interactions between 34 members of a karate club at an American univer-
sity [49]. He recorded social contacts between members of the club over a two
year period and published his results in the form of social networks. Fortuitously
there arose, during the course of the study, a dispute between the two leaders
of the club, the karate teacher and the club’s president, over whether to raise
the club’s fees. Ultimately, the dispute resulted in the departure of the karate
teacher and his starting another club of his own, taking with him about a half of
the original club’s members. Here we analyse a network constructed by Zachary
of friendships between club members before the split occurred. We compare the
predictions of our community-finding algorithm applied to this network with the
known lines along which the club divided. Our results are shown in Fig. 5.4.

In panel (a) of the figure we show the original network, with the grey squares
representing the faction that ultimately sided with the teacher (who is vertex
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number 1), and the open circles the faction that sided with the club’s president
(vertex number 34). In panel (b) we show the dendrogram output by our algo-
rithm for this network. As the figure shows, the algorithm again performs nearly
perfectly, with only one vertex, vertex number 3, being misclassified. (Inspection
of panel (a) reveals that vertex 3 is in fact precisely caught in the middle of the
network between the two factions, and so it is not entirely surprising that this
vertex was misclassified.) Bear in mind that the network in this example was
recorded before the fission of the club, so that the results of panel (b) are in
some sense a prediction of events that were, at that time, yet to occur.

Finally, for our third example, we take a network for which we do not have
any strong presuppositions about a “correct” division into communities. This
example is a true experiment to see what information the algorithm can give
us about a network whose structure is not wholly understood. The network in
question is a food web, the web of trophic interactions (who eats whom) of
marine organisms living in the Chesapeake Bay. The network was assembled by
Baird and Ulanowicz [5] and contains 33 vertices representing the ecosystem’s
most prominent taxa. The edges in a food web are, technically, directed; they
can be thought of as pointing from prey to their predators, thus indicating the
direction of energy (or carbon) flow up the food chain. Here however we have
ignored the directed nature of the network, considering the edges merely to be
undirected indicators of trophic interaction between taxon pairs.

The dendrogram produced for this food web by our community structure
algorithm is shown in Fig. 5.5. As we can see, the algorithm splits the network
into two principle communities and a couple of smaller peripheral ones. We have
coloured the vertices in the dendrogram to show which taxa are surface dwellers
in the bay (pelagic species) and which bottom dwellers (benthic species). A few
species are of undetermined status. It is clear that our algorithm has in this
case primarily extracted from the network the distinction between pelagic and
benthic taxa. Thus our results appear to imply that the food web in question
can be split roughly into separate surface- and bottom-dwelling subsystems, with
relatively weak interaction between the two. A small number of benthic species
are found to belong more strongly to the pelagic community than to the benthic
one, perhaps indicating that a simple classification of species by where they live
is not telling the whole story for this system. The results of our analysis might
also be helpful in assigning a type to the undetermined species in the network.

5.3 Origins of Community Structure and Assortative
Mixing

There is certainly more than one possible explanation for the presence of com-
munity structure in a network, and different explanations may be appropriate
to different networks. In the case of a social network, for example, Jin et al. [24]
have shown that communities can arise as a result of growth dynamics of a net-
work. If an acquaintance network grows by the introduction of pairs of people
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Fig. 5.5. The dendrogram found by our method for Baird and Ulanowicz’s food web
of marine organisms in the Chesapeake Bay [5]

to one another by a mutual acquaintance, then an initial chance acquaintance
with a member of a certain community will lead to introductions to other mem-
bers of that community, so that one ultimately becomes linked to many of the
community’s members and so becomes a member oneself. Using a simple com-
puter model of this process, Jin et al. found that even networks with no initial
community structure quickly develop such structure over time. One can think of
this as a mechanism for the development of cliquishness in social networks.

This mechanism however is quite specific to social networks and could not be
easily applied, for example, to the food web studied in the last section. It also
completely ignores any personal attributes of the actors involved or affinities
between actor pairs. A more general and perhaps more convincing explanation
for community formation, which takes these things into account, is that of assor-
tative mixing,4 which is the tendency for nodes in a network to form connections
preferentially to others that are like them in some way.

An example of assortative mixing in social networks is mixing by race.
Table 5.1 shows data from the AMEN (AIDS in Multiethnic Neighborhoods)
study [11], on mixing by race among sexual partners in the city of San Fran-
cisco, California. This part of the study focused on heterosexual partnerships,

4 The name “assortative mixing” comes from the epidemiology community, where
this effect has been studied extensively. It is also sometimes called “assortative mat-
ching”, particularly by ecologists.
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Table 5.1. The mixing matrix eij and the values of ai and bi for sexual partnerships
in the San Francisco study described in the text. After Morris [32]

women
black hispanic white other ai

m
en

black 0.258 0.016 0.035 0.013 0.323
hispanic 0.012 0.157 0.058 0.019 0.247

white 0.013 0.023 0.306 0.035 0.377
other 0.005 0.007 0.024 0.016 0.053

bi 0.289 0.204 0.423 0.084

and the rows and columns of the matrix represent men and women in such part-
nerships, grouped by their (self-identified) race. Diagonal elements of the matrix
represent the fraction of survey respondents in partnerships with members of
their own group, and off-diagonal those in partnerships with members of other
groups. Inspection of the figures shows that the matrix has considerably more
weight along its diagonal than off it, indicating that assortative mixing does
take place in this network. One might well expect mixing of this type to result
in divisions within the community along lines of race, and we will show shortly
that, within the context of simulations of network formation, assortative mixing
can indeed give rise to such community structure.

The amount of assortative mixing in a network can be characterized by mea-
suring how much of the weight in the mixing matrix falls on the diagonal, and
how much off it. Let us define eij to be the fraction of all edges in a network
that join a vertex of type i to a vertex of type j. In the case of the matrix of Ta-
ble 5.1, where the ends of an edge always attach to one man and one woman, we
should also specify which index corresponds to which type of end, which makes
eij asymmetric. For example, we could specify that the first index i represents
the man and the second j the woman. For networks in which there is no corre-
sponding distinction, eij will be symmetric. The matrix should also satisfy the
sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (5.1)

where ai and bi are the fraction of each type of end of an edge that is attached
to vertices of type i. The values of ai and bi for the San Francisco study are also
shown in Table 5.1. On graphs where there is no distinction between the ends of
edges, we will have ai = bi.

Now we can define a quantitative measure r of the level of assortative mixing
in the network thus [36]:

r =
∑
i eii − ∑

i aibi
1 − ∑

i aibi
=

Tr e − || e2 ||
1 − || e2 || , (5.2)

where e is the matrix whose elements are the eij , and the notation ||x || indicates
the sum of the elements of the matrix x. We call the quantity r the “assortativity
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coefficient”. It takes the value 1 in a perfectly assortative network, since in that
case the entire weight of the matrix e lies along its diagonal and

∑
i eii = 1.

Conversely, if there is no assortative mixing at all, then eij = aibj for all i, j and
r = 0. Networks can also be disassortative: vertices may associate preferentially
with others of different types – the “opposites attract” phenomenon. In that
case, r will take a negative value.

One can certainly imagine that assortative mixing might apply in other types
of networks as well. For example, we saw in Sect. 5.2.2 that a food web of marine
organisms apparently divided into communities along lines of location – which
species were surface dwellers (pelagic) and which bottom dwellers (benthic). It
seems reasonable to hypothesize that the evolution of new predatory relations-
hips between species is biased by the location of those species’ living quarters,
and hence that the network structure would indeed reflect the pelagic/benthic
division as a result of assortative mixing by location.

We can test our hypothesis that assortative mixing could be responsible
for community formation in networks by computer simulation. Given a mixing
matrix of the type shown in Table 5.1, we can create a random network with
the corresponding mixing pattern and any desired degree distribution by the
following algorithm.

1. First we choose degree distributions p(i)
k for each vertex type i. The quantity

p
(i)
k here denotes the probability that a randomly chosen vertex of type i will

have degree k. We can also calculate the mean degree zi =
∑
k kp

(i)
k for each

vertex type.
2. Next we choose a size for our graph in terms of the number m of edges and

draw m edges from the desired distribution eij . We count the number of
ends of edges of each type i, to give the sums mi of the degrees of vertices in
each class, and we calculate the expected number ni of vertices of each type
from ni = mi/zi (rounded to the nearest integer).

3. We draw ni vertices from the desired degree distribution p
(i)
k for type i.

Normally the degrees of these vertices will not sum exactly to mi as we want
them to, in which case we choose one vertex at random, discard it, and draw
another from the distribution p(i)

k , repeating until the sum does equal mi.
4. We pair up the mi ends of edges of type i at random with the vertices

we have generated, so that each vertex has the number of attached edges
corresponding to its chosen degree.

5. We repeat from step 3 for each vertex type.

We have used this algorithm to generate example networks with desired levels
of assortative mixing. For example, Fig. 5.6 shows an undirected network of
n = 100 vertices of four different types, generated using the symmetric mixing
matrix
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Fig. 5.6. A network generated using the mixing matrix of (5.3) and a Poisson degree
distribution with mean z = 5. The four different shades of vertices represent the four
types, and the four shapes represent the communities discovered by the community-
finding algorithm of Sect. 5.2.1. The placement of the vertices has also been chosen
to accentuate the communites and show where the algorithm fails. As we can see,
the correspondence between vertex type and the detected community structure is very
close; only nine of the 100 vertices are misclassified

e =







0.18 0.02 0.01 0.03
0.02 0.20 0.03 0.02
0.01 0.03 0.16 0.01
0.03 0.02 0.01 0.22





 , (5.3)

which gives a value of r = 0.68 for the assortativity coefficient. A simple Poisson
degree distribution with mean z = 5 was used for all vertex types. The graph was
then fed into the community finding algorithm of Sect. 5.2.1 and a cut through
the resulting dendrogram performed at the four-community level. The communi-
ties found are shown by the four shapes of vertices in the figure and correspond
very closely to the real vertex type designations, which are represented by the
four different vertex shades. In other words, by introducing assortative mixing
by vertex type into this network, we have created vertex-type communities that
register in our community finding algorithm in exactly the same way as commu-
nities in naturally occurring networks. This strongly suggests that assortative
mixing could indeed be an explanation for the occurrence of such communi-
ties, although it is worth repeating once again that other explanations are also
possible.
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5.4 Other Types of Assortative Mixing

Assortative mixing can depend on vertex properties other than the simple enu-
merative properties discussed in the preceding section. For example, we can also
have assortative mixing by scalar characteristics, either discrete or continuous.
A classic example of such mixing, much studied in the sociological literature,
is acquaintance matching by age. In many contexts, people appear to prefer to
associate with others of approximately the same age as themselves. As an exam-
ple of such mixing, consider Fig. 5.7, which shows the ages at marriage of the
male and female members of 1141 married couples drawn from the US National
Survey of Family Growth [14]. Each point in the figure represents one couple, its
position along the horizontal and vertical axes corresponding to the ages of the
husband and wife respectively. The study was based on interviews with women,
and was limited to those of childbearing age, so the vertical axis cuts off aro-
und 40. Also only the first marriage for each woman interviewed is shown, even
if she married more than once. Despite these biases however, the figure reveals
a clear trend: people prefer to marry others of an age close to their own.

It is perhaps stretching a point a little to consider first marriage ties between
couples as forming a social network, since people have at most one first marriage
and hence would have a maximum degree of one within the network. Here,
however, we consider marriage age as a proxy for the ages of sexual partners in
general, and conjecture that a similar age preference will be seen in non-married
partners also, although we are not aware of any specific data to that effect.

Assortative mixing according to scalar characteristics can result in the forma-
tion of communities, just as in the case of discrete characteristics. One could have
separate communities formed of old and young people, for instance. However, it
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Fig. 5.7. Scatter plot of the ages at first marriage of 1141 women interviewed in the
1995 National Survey of Family Growth, and their spouses. Only women of up to 45
years of age were interview, so the vertical axis does not extend as far as the horizontal
one
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is also possible that we do not get well-defined communities, but instead get an
overlapping set of groups with no clear boundaries, ranging for example from
low age to high age. In the sociological literature such a continuous gradation of
one community into another is called “stratification” of the network.

As with assortative mixing on discrete characteristics, one can define an as-
sortativity coefficient to quantify the extent to which mixing is biased according
to scalar vertex properties. To do this, we define exy to be the fraction of ed-
ges in our network that connect a vertex of property x (e.g., age) to another of
property y. The matrix exy must satisfy sum rules as before, of the form

∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (5.4)

where ax and by are, respectively, the fraction of edges that start and end at
vertices with ages x and y. Then the appropriate definition for the assortativity
coefficient is

r =

∑
xy xy(exy − axby)

σaσb
, (5.5)

where σa and σb are the standard deviations of the distributions ax and by.
The reader will no doubt recognize this definition of r as the standard Pearson
correlation coefficient for the quantities x and y. It takes values in the range
−1 ≤ r ≤ 1 with r = 1 indicating perfect assortative mixing, r = 0 indicating
no correlation between x and y, and r = −1 indicating perfect disassortative
mixing, i.e., perfect anticorrelation between x and y.

If we take the marriage data from Fig. 5.7, for example, and feed it into (5.5),
we find that r = 0.57, indicating once again that mixing is strongly assortative
(as is in any case obvious from the figure).

Mixing could also depend on vector or even tensor characteristics of verti-
ces. One example would be mixing by geographical location, which could be
regarded as a two-vector. It seems highly likely that if one were to record both
acquaintance patterns and geographical location for actors in a social network,
one would discover that acquaintance is strongly dependent on geography, with
people being more likely to know others who live in the same part of the world
as themselves.

5.4.1 Mixing by Vertex Degree

We will spend the rest of this article examining one particular case of mixing
according to a scalar vertex property, that of mixing by vertex degree, which
has been studied for some time in the social networks literature and has recently
attracted attention in the mathematical and physical literature also. Krapivsky
and Redner [27] for instance found in studies of the preferential attachment
model of Barabási and Albert [6] that edges did not fall between vertices in-
dependent of their degrees. Instead there was a higher probability to find some
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degree combinations at the ends of edges than others. Pastor-Satorras et al. [40]
subsequently showed for data on the structure of the Internet at the level of
autonomous systems that the degrees of adjacent vertices were anticorrelated,
i.e., that high-degree vertices prefer to attach to low-degree vertices, rather than
other high-degree ones – the network is disassortative by degree. To demonstrate
this, they measured the mean degree degree 〈knn〉 of the nearest-neighbours of a
vertex, as a function of that vertex’s degree k. They found that 〈knn〉 decreases
with increasing k, approximately as k−1/2. That is, the mean degree of your
neighbours goes down as yours goes up. Maslov and Sneppen [29] have offered
an explanation of this result in terms of ensembles of graphs in which double
edges between vertices are forbidden. Maslov and Sneppen also showed in a se-
parate paper [30] that the protein interaction network of the yeast S. Cerevisiae
displays a similar sort of disassortative mixing.

An alternative way to quantify assortative mixing by degree in a network is to
use an assortativity coefficient of the type described in the previous section [35].
Let us define ejk to be the fraction of edges in a network that connect a vertex
of degree j to a vertex of degree k. (As before, if the ends of an edge connect
different types of vertices, then the matrix will be asymmetric, otherwise it will
be symmetric.) In fact, we define j and k to be the “excess degrees” of the two
vertices, i.e., the number of edges incident on them less the one edge that we
are looking at at present. In other words, j and k are one less than the total
degrees of the two vertices. This designation turns out to be mathematically
convenient for many developments. If the degree distribution of the network as
a whole is pk, then the distribution of the excess degree of the vertex at the end
of a randomly chosen edge is

qk =
(k + 1)pk+1

z
, (5.6)

where z =
∑
k kpk is the mean degree [37]. Then one can define the assortativity

coefficient to be

r =

∑
jk jk(ejk − qjqk)

σ2
q

, (5.7)

where σq is the standard deviation of the distribution qk. On a directed or similar
network, where the ends of an edge are not the same and ejk is asymmetric, this
generalizes to

r =

∑
jk jk(ejk − qaj q

b
k)

σaσb
, (5.8)

where σa and σb are the standard deviations of the distributions qak and qbk for
the two types of ends. (The measure introduced by Pastor-Satorras et al. [40]
can also be expressed simply in terms of the matrix ejk: it is 〈knn〉 =

∑
j jejk.

Maslov and Sneppen [30, 29] gave entire plots of the raw ejk, using colours to
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Table 5.2. Size n and degree assortativity coefficient r for a number real-world net-
works. Social networks: coauthorship networks of (a) physicists and biologists [34]
and (b) mathematicians [19]; (c) collaborations (co-starring relationships) of film ac-
tors [46, 39]; (d) directors of Fortune 1000 companies for 1999, in which two directors
are connected if they sit on the board of directors of the same company [13, 39];
(e) network of email address books of computer users [38]. Technological networks:
(f) network of direct peering relationships between autonomous systems on the Inter-
net, April 2001 [12]; (g) network of hyperlinks between pages in the World-Wide Web
domain nd.edu circa 1999 [3]; (h) network of dependencies between software packa-
ges in the GNU/Linux operating system [36]. Biological networks: (i) protein–protein
interaction network in the yeast S. Cerevisiae [22]; (j) metabolic network of the bacte-
rium E. Coli [23]; (k) neural network of the nematode worm C. Elegans [47, 46]; tropic
interactions between species in the food webs of (l) Ythan Estuary, Scotland [21] and
(m) Little Rock Lake, Wisconsin [28]. After Newman [36]

network type size n assortativity r ref.

so
ci

al

physics coauthorship undirected 52 909 0.363 a
biology coauthorship undirected 1 520 251 0.127 a
mathematics coauthorship undirected 253 339 0.120 b
film actor collaborations undirected 449 913 0.208 c
company directors undirected 7 673 0.276 d
email address books directed 16 881 0.092 e

te
ch

no
l.

Internet undirected 10 697 −0.189 f
World-Wide Web directed 269 504 −0.067 g
software dependencies directed 3 162 −0.016 h

bi
ol

og
ic

al

protein interactions undirected 2 115 −0.156 i
metabolic network undirected 765 −0.240 j
neural network directed 307 −0.226 k
marine food web directed 134 −0.263 l
freshwater food web directed 92 −0.326 m

code for different values. These plots are however rather difficult to interpret by
eye.)

In Table 5.2 we show values of r measured for a variety of different real-world
networks. The networks shown are divided into social, technological and biolo-
gical networks, and a particularly striking feature of the table is that the values
of r for the social networks are all positive, indicating assortative mixing by de-
gree, while those for the technological and biological networks are all negative,
indicating disassortative mixing. It is not clear at present why this should be,
although explanations for the observed mixing behaviours have been proposed
in some specific cases [29, 36].

As with the mixing by discrete enumerative characteristics discussed in
Sect. 5.3, we can also investigate the effects of assortative mixing by looking
at computer generated networks with particular types of mixing. Unfortuna-
tely, no simple algorithm exists for generating graphs mixed by vertex degree
analogous to that of Sect. 5.3 (see Dorogovtsev et al. in this volume and New-
man [36]) and one is forced to resort to Monte Carlo generation of graphs using



82 M.E.J. Newman and M. Girvan

Fig. 5.8. The giant component of two graphs generated using a Monte Carlo procedure
with edge distribution given by (5.9) with κ = 10 and a p = 0.5 and b p = 0.05

Metropolis–Hasting type algorithms of the sort widely used for graph genera-
tion in mathematics and quantitative sociology. Such algorithms however are
straightforward to implement. For the present case, we take the simple example
form

ejk = N e−(j+k)/κ
[(
j + k

j

)

pjqk +
(
j + k

k

)

pkqj
]

, (5.9)

where p + q = 1, κ > 0, and N = 1
2 (1 − e−1/κ) is a normalizing constant. This

means that the distribution of the sum j+k of the excess degrees at the ends of
an edge falls off as a simple exponential, while that sum is distributed between
the two ends binomially, the parameter p controlling the assortative mixing. For
values of p ranging from 0 to 1

2 we get various values of the assortativity r, both
positive and negative, passing through zero at p0 = 1

2 − 1
4

√
2 = 0.1464 . . .

As an example, we show in Fig. 5.8 the giant components of two graphs of this
type generated using the Monte Carlo method. One of them, graph (a), is assor-
tatively mixed by degree, while the other, graph (b), is disassortatively mixed.
The difference between the two is clear to the eye. In the first case, because the
high degree vertices prefer to attach to one another, there is a central “core” to
the network, composed of these high-degree vertices, and a straggling periphery
of low-degree vertices around it. In epidemiology a dense central portion of this
type is called a “core group” and is thought to be capable of acting as a reservoir
for disease, keeping diseases circulating even when the density of the network
as a whole is too low to maintain endemic infection. In social network analysis
one also talks of “core/periphery” distinctions in networks, another concept that
mirrors what we see here. In the second graph, which is disassortative, a con-
trasting picture is evident: the high-degree vertices prefer not to associate with
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Fig. 5.9. The size of the giant component as a function of graph size for graphs with
the edge distribution given in (5.9), for three different values of the parameter p, which
controls the assortativity. The points are simulation results for graphs of N = 100 000
vertices while the solid lines are the analytic solution for the same quantity given by
Newman [35]. Each point is an average over ten graphs; the resulting statistical errors
are smaller than the symbols. The values of p are 0.5 (circles), p0 = 0.146 . . . (squares),
and 0.05 (triangles)

one another, and are as a result scattered widely over the network, producing a
more uniform appearance.

To shed more light on the effects of assortativity, we show in Fig. 5.9 the
size of the largest component in networks of this type as the degree distribution
parameter κ is varied, for various values of p. For low values of κ the mean
degree of the network is small, and the resulting density of edges is too low
to produce percolation in the network, so there is no giant component. As κ
increases, however, there comes a point, clearly visible on the plot, at which
the edge density is great enough to form a giant component. Figure 5.9 reveals
two interesting features of this transition. First, the position of the transition,
the value of the parameter κ at which it takes place, is smaller in assortatively
mixed networks than in disassortative ones. In other words, it appears that the
presence of assortativity in the degree correlation pattern allows the network
to percolate more easily. This result is intuitively reasonable: the core group of
the assortative network seen in Fig. 5.8a has a higher density of edges than the
network as a whole and so one would expect percolation to take place in this
region before it would in a network with the same average density but no core
group.

Second, the figure shows that, even though the assortative network percolates
more easily than its disassortative counterpart, its largest component does not
grow as large as that of the disassortative network in the limit where κ becomes
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large. This too can be understood in simple terms: percolation occurs more easily
when there is a core group, but is also largely confined to that core group and so
does not spread to as large a portion of the network as it would in other cases.

In epidemiological terms, one could think of these two results as indicating
that assortative networks will support the spread and persistence of a disease
more easily than disassortative ones, because they possess a core group of connec-
ted high-degree vertices. But the disease is also restricted mostly to that core
group. In a disassortative network, although percolation and hence epidemic di-
sease requires a denser network to begin with, when it does happen it will affect
a larger fraction of the network, because it is not restricted to a core group.

5.5 Conclusions

In this article we have examined two related properties of networks: commu-
nity structure and assortative mixing. We have described a new algorithm for
finding groups of tightly-knit vertices within networks – communities in our no-
menclature – which is based on the calculation of an “edge betweenness” index
for network edges. The algorithm appears to be successful at detecting known
community structure in various example networks, and we have found that many
real-world networks do indeed possess community structure to a greater or lesser
degree.

Turning to possible explanations for this structure we have suggested that
assortative mixing, the preferential association of vertices in a network with
others that are like them in some way, is one possible mechanism for community
formation. We have defined a measure of the strength of assortative mixing and
applied it, for example, to data on mixing by race in social networks, showing
that there is strong assortativity in this case, at least for the survey data that
we have examined. We have also given a simple algorithm for creating networks
with assortative mixing according to discrete characteristics imposed upon the
vertices, and used it to generate example networks which, when fed into our
community detection algorithm, reveal strong community structure similar to
that seen in the real-world data. This lends some conviction to the theory that
assortative mixing could, at least in some cases, be a contributing factor in the
formation of communities within networks.

We have also looked at assortative mixing by scalar characteristics of verti-
ces, such as the age of individuals in a social network, and particularly vertex
degree. By measuring mixing of the latter type for a variety of different networks,
we have shown that social networks appear often to be assortatively mixed by
degree, while technological and biological networks appear normally to be disas-
sortative. Using computer generated model networks we have also shown that
assortativity by vertex degree makes networks percolate more easily – they de-
velop a giant component for a lower average edge density than a similar network
with neutral or disassortative mixing. Conversely, however, disassortative net-
works tend to have larger giant components when they do develop. These findings
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have implications for epidemiology, for example: they imply that a disease sprea-
ding on a network that is assortatively mixed, as most social networks appear
to be, would reach epidemic proportions more easily than on a disassortative
network, but that an epidemic might ultimately affect fewer people than in the
disassortative case.

Looking ahead, some obvious next steps in the studies presented here are
the application of community finding algorithms to other networks, the study of
mixing patterns in other networks, and theoretical investigations of the effects
of assortative mixing and other network correlations on network structure and
function, including for instance network resilience and network epidemiology. A
number of authors have already started work on these problems [20, 48, 8, 43,
35, 36].
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6 Effect of Accelerated Growth
on Networks Dynamics

J.F.F. Mendes

Departamento de F́ısica, Universidade de Aveiro, Campus Universitário de Santiago,
3810-193 Aveiro, Portugal

Abstract. In most of real growing networks the mean number of connections per
vertex increases with time. Among the examples of large networks presenting this type
of growth are the Internet, the Word Wide Web, collaborations networks, and many
others. We call this type of growth accelerated growth. We show that the accelerated
growth influences the distribution of connections and as consequence it may determine
the structure of a network. For the growing networks with preferential linking and
increasing density of links, two scenarios are possible. In one of them, the value of the
exponent γ of the connectivity distribution P (q, t) ∝ q−γ is between 3/2 and 2. In
the other the exponent is, γ > 2, and the distribution is necessarily non-stationary.
We discuss the general consequences of the acceleration and demonstrate its features
applying it to simple illustrating examples. In particular, we show that the accelerated
growth fairly well explains the structure of the Word Web (the network of interacting
words of human language).

6.1 The Meaning of Acceleration in Networks

In the last recent years there has been a growing interest in the study of topologic
and dynamical properties of what has come to be known as complex networks.
Many models have been devoted to the study of real networks. Most of models
of evolving networks contain a very important assumption. In these models it is
assumed that the total number of edges of a growing network is a linear function
of its size (total number of vertices). The linear growth does not change the
average degree of the network [1, 2, 3] This same is not true in the case of
accelerated growth. We present some examples of networks that belong to the
family of nets that has an acceletated growth. However, there are also examples
of real nets that do not belong to this family and also not to the linear growth
ones, is the case, for instance, of biological networks.

The first model for the growth of networks under mechanism of preferential
linking which was introduced by Barabási-Albert (Barabási-Albert model) [4]
(see also [5]), is only one example of a linearly growing network from a very long
list [6, 7, 8, 9, 10, 11, 12, 13]. Thus, a linear type of growth is usually supposed
to be a natural feature of growing networks. But let us ask ourselves, whether
this very particular case, that is, the linear growth is or not so widespread in
real networks. To answer this question we must look at existing empirical data.
In any case we will consider these problems using general arguments. Assuming

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 88–113, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Fig. 6.1. The WWW is a directed graph. In this schematic picture we show its struc-
ture when the strongly connected component (GSCC) is present. The other, also giant
components, are the giant out- and in-component, respectively GOUT and GIN and
giant weekly connected component (GWCC)....

that the network is scale-free, we will describe the possible degree distributions
and show , in this case, that the total number of links is a power-law function of
the network size. Let us present results of some of the most well known networks.

(i) The World Wide Web:
The WWW consists of a set of documents (pages) plus hyper-links between them.
The WWW contrarily to the Internet (that will be presented below) is a direc-
ted network. Although hyper-links are directed, pairs of counter-links, in princi-
ple, may produce undirected connections. Links inside pages (self-references) are
usually not considered as edges of the WWW, so this network does not contain
“tadpoles” (closed one-edge loops). Figure 5.1 shows in a schematic form the
structure of a directed graph and all his components (for a detailed description,
see [3]).

According to [14], in May of 1999, and using data from Altavista, the WWW
consisted of 203 × 106 vertices (URLs, i.e., pages) and 1466 × 106 hyper-links.
So, the average in- and out- degree were ki = ko = 7.22. It is possible to found
values for the WWW size for other times. We summarise some known ones on
Table 6.1.

The average in- and out-degrees are equal to each other, since all the connec-
tions are inside the WWW. (Notice that the “physical” time is unimportant for
us, so that, in principle, we might not mention any date.)

Table 6.1. Known values of the size of WWW at different times

date Nnodes Nlinks k

May 99 203 × 106 1466 × 106 7.22

Oct 99 271 × 106 2130 × 106 7.85
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As we can see from the Table 6.1, the average degree of the WWW is increa-
sing.

(ii) The Internet:
Roughly speaking, the Internet (support of the WWW) is a set of vertices, linked
by wires. The vertices of the Internet are hosts (computers of users), servers
(computers or programs providing a network service that also may be hosts),
and routers that arrange traffic across the Internet. Connections are naturally
undirected (an undirected network, the physical connection (wires) can transport
information in both sides). In January of 2001, the Internet contained already
about 100 millions hosts. One should emphasize, that it is not the hosts that
determine the structure of the Internet, but rather, routers and domains. In
July of 2000, there were about 150 000 routers in the Internet [15]. Later, the
number rose to 228 265 (data from [17]). Thus, one can consider the topology of
the Internet on a router level or inter-domain topology [18]. In the latter case
(inter-domain level), it is actually a small network not allowing to make a good
analysis (see Table 6.2).

The last data of [18] are for December of 1998. However, one may use more
recent data on “autonomous systems”. Extensive data on connections of ope-
rating “autonomous systems” (AS) in the Internet are being collected by the
National Laboratory for Applied Network Research (NLANR). For nearly each
day, starting from November of 1997, NLANR has a map of connections of AS.
These maps are closely related to the Internet graph on the inter-domain level.
Statistical analysis of these data was made in [19, 20]. The data were averaged,
and for 1997 the average degree 3.42 was obtained; in 1998, the average degree
was 3.65; in 1999, k = 3.76. Again we see that the average degree of the Internet
on the inter-domain level (more rigorously speaking, on the AS level) is increa-
sing. One should add that the growth of the average degree of the net of AS was
also indicated in [21]. Table 5.2 summarises some of the known values for the
Internet size on time.

It is clear that the average degree of the Internet on the inter-domain level
is increasing in time.

Table 6.2. Known values of the Internet size (inter-domain level) at different times

date Nnodes Nlinks k

Nov 97 3015 5156 3.42

Apr 98 3530 6432 3.64

Dec 98 4389 8256 3.76

Dec 99 6374 13641 4.28

Sep 01 11927 27492 4.61
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(iii) Collaboration Networks:
Roughly speaking a collaboration network consists of a set of vertices and links,
where vertices are collaborators and a pair of vertices is connected together by an
undirected edge if there is at least one act of collaboration between them [4, 24].
For example, in scientific collaboration networks (networks of coauthorships),
vertices are authors, and edges are coauthorships [25]. Another example, are all
Hollywood movies; if we assign a node to each actor and connect two nodes if
the corresponding actors have worked together in one or more movies, we ob-
tain a collaboration network. Such networks are projections of more complex
and informative bipartite graphs, which contain two types of vertices: collabo-
rators and acts of collaboration. Each collaborator is connected to all the acts
of collaboration, in which he was involved.

Empirical data of [26, 28] for large scientific collaboration networks indicate
the linear growth of their average degree with the increasing number of their
vertices. This means that the total number of edges in a network increases as a
square of the total number of vertices.

Thus we see that the accelerated growth of networks is not an exception but
rather a rule. On the contrary, the linear growth is a simple but very particular
case.

6.2 Degree Distributions

6.2.1 What Types of Degree Distribution Can We Have?

We focus here our attention on the simplest degree distributions of networks,
P (k). Most of empirical results are obtained for this simple characteristic. Un-
fortunately, the degree distribution (in-, out-degree distribution) is a restricted
characteristic of networks. Indeed, degree is a one-vertex quantity, so that, in ge-
neral, degree distribution does not yield information about the global topology
of a network. For a more detailed understanding one should find correlations
between nodes.

In most of cases, for example, for growing networks, in which correlati-
ons between degrees of vertices are strong [11, 19, 20], a degree distribution
is only the tip of the iceberg. The Internet corresponds to one such exam-
ple. Basically its correlations arise because of its hierarchical structure. As a
consequence, vertices with high degrees are expected to be connected to ver-
tices with small degrees. Of course, if degree-degree correlations in a network
are absent, then, knowing the degree distribution of a network, one can com-
pletely characterize the net . We face this situation in many equilibrium net-
works.

Furthermore, analytical results on percolation on networks [31, 32], disease
spread within them [34, 35], etc. were obtained just for a simple construction
without degree-degree correlations. This construction is a standard model of
a maximally random graph with an arbitrary degree distribution taken from
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mathematical graph theory (“random graphs with restricted degree sequen-
ces”) [36]. Luckily, it seems that main percolation and disease spread results
that was obtained for equilibrium networks are still valid for non-equilibrium
nets.

So we can ask, what kinds of degree distributions can be observed in net-
works? Here we list the main types with some simple examples of the correspon-
ding networks.

(a) Poisson degree distribution: P (k) = e−kk
k
/k! (see Fig. 6.2a)

The Poisson distribution is realized in a classical random equilibrium graph of
Erdös and Rényi [37, 38] in the limit of the infinite network, that is, when the
total number of vertices N is infinite. Pairs of randomly chosen vertices are
connected by edges. One may create at random L edges in the graph, or connect
pairs of vertices with the probability L/[N(N − 1)/2]. In both these cases, the
resulting graph is the same in the limit N → ∞.

a) b)

c) d)

e)

log P(k)

log P(k)

log P(k) log P(k)

log P(k)

log k

log k

log k

log k

log k

Fig. 6.2. “Zoology” of degree distributions in networks. Main types of a degree dis-
tribution in log-log plots. a Poisson, b exponential, c power-law, d multifractal, and
e discrete distributions
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(b) Exponential degree distribution: P (k) ∼ exp(−k/const) (see Fig. 6.2b)
A citation graph1 with attachment of new vertices to randomly chosen old ones
produces the exponential distribution, but this is only one possible example.
(Let each new vertex have the same number of connections, that is, the growth
is linear.)

Also, the exponential degree distribution is rather usual for many equilibrium
networks that are constructed by mechanism of preferential linking.

(c) Power-law degree distribution: P (k) ∼ k−γ (see Fig. 6.2c)
Here the standard example is the Barabási-Albert model [4] (see also [5]). This
growing network is a linearly growing citation graph in that new vertices are
attached to preferentially chosen old ones. “Popular” old vertices attract more
new connections than “failures”: “popularity is attractive”. This is a quite general
principle. For example, this one is incorporated in the Simon model [39, 40]. In
the Barabási-Albert model, the probability that an edge becomes attached to
some vertex is proportional to the degree k of this vertex. This yields γ = 3.
If the probability is proportional to k + const (a linear preference function), γ
takes values between 2 and ∞ as the constant changes from −1 to ∞ [7].

Power-law distributions are usually called scale-free or fractal.

(d) Multifractal degree distributions (see Fig. 6.2c)
This distribution has a continuum spectrum of power laws with different weights.
The growth of a network may produce such a degree distribution if new vertices
partially copy degrees of old ones [41]. In particular, multifractal degree distri-
butions emerge in some models of networks of protein-protein interactions [42].
Multifractal distributions is a more general case of a fat-tailed distribution than
power-law distributions. Numerous empirical data were fitted by a power-law
dependence. However, there were no attempts to check the possibility that at
least some of empirical degree distribution are multifractal.

(e) Discrete degree distributions (see Fig. 6.2d)
Deterministic growing graphs have a discrete spectrum of degrees. Recently, it
was demonstrated that some simple rules of deterministic growth may produce
discrete degree distributions with a power-law decay [43]. Moreover, determi-
nistic graphs from [3, 44, 45] have an average shortest-path length, which is
proportional to the logarithm of their size. Figure 6.3 shows a simple determini-
stic graph [3, 44] with the discrete degree distribution that is characterized by
exponent γ = 1 + ln 3/ ln 2.

6.2.2 The Most Interesting Case: Power-Law Degree Distribution

Power-law (that is, “scale-free”) degree distributions is a prominent particular
case of fat-tailed degree distributions, which are widespread in real networks
1 In the citation graph nodes are papers and links are the citations to previously

published papers. It is a growing graph in which new links do not emerge between
pairs of old nodes.
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Fig. 6.3. A simple deterministic graph with a power-law discrete degree distribution.
The growth starts from a single edge between two vertices. At each time step, each edge
of the graph generates a new vertex, which became attached to both the end vertices of
the mother edge. The average shortest-path length of this graph grows logarithmically
with the total number of vertices

(both natural and artificial) [4, 5, 24]. Let us discuss briefly the general features
of power-law distributions.

One may ask, what values can the exponent γ take? To answer this question
one should impose the natural restriction that follows from the normalization
condition

∫
dkP (k) = 1 (in this discussion we change the corresponding sum

to the integral). We may not be worried about the low-degree region, since
the degree distribution is certainly restricted below some characteristic degree
k0. Only the large degree behavior of the degree distribution is interesting for
us. Therefore, from this condition we get that γ > 1, otherwise the integral is
divergent.

If a network grows linearly, so the first moment of the distribution (the
average degree k), is independent of time, then we have a second restriction∫
dkkP (k) < ∞ which implies that γ > 2 for linearly growing networks.

The finite size effect cuts the power-law part of the degree distribution at
large degrees. This produces size-dependent degree distributions. One may easily
estimate the position of the cutoff kcut in the situation where γ > 2. Let the total
number of vertices in the net be t, and k0 be some characteristic degree, below
which the distribution is, for example, constant or even zero. Then, using the
normalization

∫
dkP (k) = 1 gives the power-law part of the degree distribution

of the form P (k) ∼ [(γ − 1)kγ−1
0 ]k−γ for k0 < k < kcut.

When one measures the degree distribution of a network using only one
realization of the growth process, strong fluctuations are observed at degree kf (t)
that is determined by the condition tP (kf (t)) ∼ 1. This means that only one
vertex in the network has such degree. (More rigorously speaking, the number of
such vertices is of the order of one.) This is the first natural scale of the degree
distribution.

One may improve the statistics by measuring many realizations of the
growth process, or, for example, by passing to the cumulative distribution
Pcum(k) ≡ ∫ ∞

k
dk P (k). Both these tricks allow us to reduce the above fluc-
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log P(k)

log kcutlog k

Fig. 6.4. The typical form of a power-law degree distribution of finite growing net-
works. The finite-size cutoff is given by (6.1). The hump near the cutoff depends on
initial conditions (we do not account for the factor of mortality)

tuations. However, we still cannot surpass the next threshold that is originated
from the second natural scale, kcut: tPcum(kcut(t)) ∼ 1. This means that only
one vertex in the network is of degree greater than kcut. (Again, more rigorously,
the number of such vertices is of the order of one.) Using the above expression
for P (k) gives

kcut ∼ k0 t
1/(γ−1) . (6.1)

Notice that the only reason for this estimate for the cutoff is the natural scale
of the problem. Hence more convincing arguments are necessary. The estimate
was checked for some specific models. A growing network [13] was solved exac-
tly, and the exact position of the cutoff have coincided with (6.1). The degree
distribution of this network has a typical form (see Fig. 6.4). Notice a hump
near kcut in Fig. 6.4. This is a trace of initial conditions. Simulation of a scale-
free equilibrium network [46] also yielded the cutoff at this point. However, the
introduction of the death of vertices in the network may change the estimate
(6.1). This factor also removes the hump from the degree distribution. Here we
do not consider such situations.

The cutoff (6.1) hinders measurements of power-law dependences in networks
[13]. From (6.1) one sees that the measurements of large enough γ are actually
impossible. Indeed, in this case kcut is small even for very large networks, and
there is no room ln k0 < ln k < ln kcut for fitting.

No scale-free networks with large values of γ were observed. The reason for
this is clear. Indeed, the power-law dependence of the degree distribution can be
observed only if there exists for at least 2 or 3 decades of degree. For this, the
networks have to be large: their size should be, at least, t > 102.5(γ−1). Then, if
γ is large, one practically has no chances to find the scale-free behavior.

In Fig. 6.5, in the log-linear scale, we present the values of the γ exponents of
all the networks reported as having power-law degree distributions vs. their sizes
(see also Table 6.3). One sees that almost all the plotted points are inside of the
region restricted by the lines: γ = 2, log10 t ∼ 2.5(γ − 1), and by the logarithm
of the size of the largest scale-free network – the World-Wide Web – log10 t ∼ 9.
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Fig. 6.5. Log-linear plot of the γ exponents of all the networks reported as having
power-law (in-, out-) degree distributions (i.e., scale-free networks) vs. their sizes. The
line γ ∼ 1+log10 t/2.5 is the estimate of the finite-size boundary for the observation of
the power-law degree distributions for γ > 2. Here 2.5 is the range of degrees (orders)
which we believe is necessary to observe a power law. The dashed line, γ = 3, is the
resilience boundary . This boundary is important for networks which must be stable
to random breakdowns. The points are plotted using the data from Table 6.1. The
points: 1i and 1o from complete map of the nd.edu domain of the WWW [52]; 1i′ and
1o′ from pages of the WWW scanned by Altavista in October of 1999 [14, 53]; 1o′′

is the γo value from another fitting of the same data [32]; 1i′′′ is γi for domain level
of the WWW in spring 1997 [54]); 2 is γ for the inter-domain level of the Internet
in December 1998 [18]; 2′ is γ for the network of operating AS in one of days in
December 1999 [19]; 3 is γ for the router level of the Internet in 1995 [18]; 3′ is γ for
the router level of the Internet in 2000 [15]; 4i is γi for citations of the ISI database
1981 – June 1997 [23]; 4i′ is the result of the different fitting of the same data [59];
4i′′ is another estimate obtained from the same data [6, 11]; 4j is γi for citations of
the Phys. Rev. D 11-50 (1975-1994) [23]; 4j′ is the different fitting of the same data
[59]; 4j′′ is another estimate from the same data [6, 11]; 4j′′′ is γi for citations of
the Phys. Rev. D (1982-June 1997) [22]; 5a is the γ exponent for the collaboration
network of movie actors [4]; 5a′ is the result of another fitting for the same data [8]; 5b
is γ for the collaboration network of MEDLINE [25]; 5b′ is γ for the collaboration net
collected from mathematical journals [26]; 5b′′ is γ for the collaboration net collected
from neuro-science journals [26]; 6io is γi = γo for networks of metabolic reactions
[16]; 7 is γ of the network of protein-protein interactions (yeast proteome) [27, 57]; 8
is γ from word web in the range below the crossover point [49]; 9 is γ of large digital
electronic circuits [55]; 10 is γi of the telephone call graph [58]; 11 is γ from web of
human sexual contacts [56].
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Table 6.3. Sizes and values of the γ exponent of the networks or subgraphs reported
as having power-law (in-, out-) degree distributions. For each network (or class of
networks) data are presented in more or less historical order, so that the recent exciting
progress is visible. Errors are not shown. They depend on the size of a network and
on the value of γ. 1The data for the network of operating AS was obtained for one
of days in December 1999. 2The value of the γ exponent was estimated from the
degree distribution plot in [15]. 3The network of protein-protein interaction is treated
as undirected. 4The value of the γ exponent for the word web is given for the range of
degrees below the crossover point. 5The out-degree distribution of the telephone call
graph cannot be fitted by a power-law dependence. 6In fact, the data was collected
from a small set of vertices of the web of human sexual contacts. These vertices almost
surely have no connections between them. 7These food webs are truly small

Network or subgraph # of nodes # of edges γ Ref.

complete map nd.edu domain 325, 729 1, 469, 680 γi = 2.1 [52]
γo = 2.45

pages of WWW scanned by Altavista 2.711 108 2.130 109 γi = 2.1 [14, 53]
in October of 1999 γo = 2.7

“———–” (another fitting of the same data) γi = 2.10 [32]
γo = 2.82

domain level of the WWW in spring 1997 2.60 105 — γi = 1.94 [54]

inter-domain level of the Internet in Dec. 98 4389 8256 2.2 [18]

net of operating AS in Internet 1 6374 13641 2.2 [19]

router level of the Internet in 1995 3888 5012 2.5 [18]

router level of the Internet in 2000 2 ∼ 150, 000 ∼ 200, 000 ∼ 2.3 [15]

citations, ISI database 1981 – June 97 783, 339 6, 716, 198 γi = 3.0 [23]

“———–” (another fitting, same data) γi = 2.9 [59]

“———–” (another estimate, same data) γi = 2.5 [6, 11]

citations, Phys. Rev. D 11-50 (1975-94) 24, 296 351, 872 γi = 3.0 [23]

“———–” (another fitting, same data) γi = 2.6 [59]

“———–” (another estimate, same data) γi = 2.3 [6, 11]

citations, Phys. Rev. D (1982-June 1997) — — γi = 1.9 [22]

collab. network of movie actors 212, 250 61, 085, 555 2.3 [4]

“————” (another fitting of the same data) 3.1 [8]

collab. network of MEDLINE 1, 388, 989 1.028 107 2.5 [25]

collab. net collected from math. jour. 70, 975 0.132 × 106 2.1 [26]

collab. net collected from neuro-science jour. 209, 293 1.214 × 106 2.4 [26]

networks of metabolic reactions ∼ 500 − 800 ∼ 2000 γi = 2.2 [16]

γo = 2.2

net of protein-protein interactions (yeast) 3 1870 2240 ∼ 2.5 [27, 57]

word web 4 470, 000 17, 000, 000 1.5 [49]

digital electronic circuits 2 × 104 4 × 104 3.0 [55]

telephone call graph 5 47 × 106 8 × 107 γi = 2.1 [58]

web of human sexual contacts 6 2810 — 3.4 [56]

food webs 7 93 − 154 405 − 366 ∼ 1 [33]
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So, many questions can be addressed: What is the nature of power-laws in net-
works? One may directly relate them to self-organized criticality. While growing
under mechanism of preferential linking, networks self-organize into scale-free
structures, that is, are in a critical state. This critical state is realized for a wide
range of parameters of preferential linking, namely for any linear preference fun-
ction (more rigorously, for any preference function which is asymptotically linear
at large k [6]). The linear growth of networks may produce scale-free structu-
res. Then, one may ask: What degree distributions does the accelerated growth
produce?

6.3 General Relations for the Accelerated Growth

Let us start with general considerations and do not restrict ourselves by some
specific model. Let the average degree grows as a power of t, k ∝ ta, that is,
the total number of edges L(t) ∝ ta+1. Here a > 0 is the growth exponent. The
consideration is valid not only for degree, but also for in-, and out-degrees, so
we use the same notation k for all them. The power-law type of acceleration we
have chosen since one may hope that it provide scale-free networks. We suppose
from the very beginning that this is the case and then check our assumption.

For the accelerated growth, the degree distribution may be non-stationary.
It is natural to choose its power-law part in the form

P (k, t) ∼ tzk−γ . (6.2)

Here we have introduced new exponent z > 0 [3, 47, 48] (recall that we consider
only a > 0). This form is valid only in the range k0(t) < k < kcut(t). Using the
normalization condition

∫ ∞
k0(t)

dk tzk−γ ∼ 1 gives

k0(t) ∼ tz/(γ−1) . (6.3)

This estimate is valid for any γ > 1.
The cutoff kcut(t) is estimated from the condition t

∫ ∞
kcut(t)

dk tzk−γ ∼ 1.
Therefore,

kcut(t) ∼ t(z+1)/(γ−1) (6.4)

(compare with (6.1) for the linear growth.) Equation (6.4) holds for any γ > 1.
We will consider two cases (see Fig. 6.6), 1 < γ < 2 and γ > 2. Recall that

we do not account for mortality of vertices.

(i) 1 < γ < 2
Recall that the average degree distribution k(t) ∼ ta. Then

ta ∼
∫ t(z+1)/(γ−1)

dk ktzk−γ ∼ t−1+(z+1)/(γ−1) .
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Fig. 6.6. Schematic log-log plots of degree distributions in the two models for accele-
rating growth of networks. The first model produces the stationary degree distribution
with the exponent γ < 2 a at long times. The degree distribution of the second model
b is non-stationary, γ > 2. The arrows indicate changes of the distributions as the
networks grow

Here the value of the integral is determined by its upper limit. Therefore, (z +
1)/(γ − 1) = a+ 1, and the cutoff is of the order of the total number of edges in
the network,

kcut(t) ∼ ta+1 ∼ L(t) . (6.5)

But this is the maximum possible degree in the problem. In this sense, any cutoff
of a degree distribution is absent if γ < 2. From the last relation, we obtain the
γ exponent in such a situation,

γ = 1 +
z + 1
a+ 1

. (6.6)

Here, for γ < 2, one assumes that z < a. The lower boundary for γ, namely
γ = 1 + 1/(a + 1) is approached when z = 0, that is, when the distribution is
stationary.
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(ii) γ > 2
The integral for the average degree is determined by its lower limit

ta ∼
∫

tz/(γ−1)
dk ktzk−γ ∼ tz−z(γ−2)/(γ−1) .

Hence

γ = 1 +
z

a
(6.7)

and z > a to keep γ > 2. Notice that this relation is not valid for a = 0. One
sees that, in this case, the degree distribution cannot be stationary: z > a > 0.

6.4 Scaling Relations for Accelerated Growth

For simple scale-free networks that grow in a linear mode, simple scaling relations
can be written [7, 9]. Let us briefly describe the corresponding scaling relations
for the accelerated growth. If vertices in a growing network do not die, one can
label them by their “birth date” 0 < s < t. We denote by p(k, s, t) the probability
that the vertex s is of the degree q. The average degree of a vertex s at time t
is k(s, t) ≡ ∫

dk kp(k, s, t).
For networks that we consider the k(s, t) is

k(s, t) ∝ tδ
(s

t

)−β
, (6.8)

where β and γ are scaling exponents. One can show [48] that

p(k, s, t) = [1/k(s, t)]g[k/k(s, t)], (6.9)

where g[ ] is some scaling function, therefore

p(k, s, t) = t−δ
(s

t

)β
g

[

kt−δ
(s

t

)β
]

. (6.10)

Using the relation P (k, t) = t−1
∫ t
0 dsp(k, s, t) yields

∫ ∞

0
dx t−δxβg[kt−δxβ ] ∝ tδ/βk−1−1/β ∝ tzk−γ , (6.11)

whence we obtain relations for the scaling exponents:

γ = 1 + 1/β (6.12)

and

z = δ/β . (6.13)
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Taking into account these relations gives the scaling form

p(k, s, t) =
s1/(γ−1)

t(z+1)/(γ−1) g

[

k
s1/(γ−1)

t(z+1)/(γ−1)

]

. (6.14)

Similarly, one can find the scaling form for the degree distribution.

P (k, t) = tzk−γG(kt−(1+z)β) = tzk−γG(kt−(1+z)/(γ−1)) , (6.15)

where G( ) is a scaling function. When z = 0, (6.14) and (6.15) coincide with
the scaling relations [7, 9] for linearly growing networks.

Notice that it is sufficient to know a and only one exponent of γ, β, z, δ, or x
to find all the others.

6.5 What Are the Degree Distributions Produced
by Acceleration?

Let us discuss several illustrative examples. To begin with, we consider a network
growing under mechanism of preferential linking, in which the number of new
connections increases as a power law in time. At this point we do not discuss the
origin of this power-law dependence. Let it be equal to c0ta, where c0 is some
positive constant. Here it is convenient to study the in-degree distribution, so
that k will be in-degree. In such an event we are interested only in incoming
connections, so that the outgoing ends of new edges may be attached to any
vertices of the network or even be outside of the net.

Let the probability that a new edge becomes attached to a vertex of in-degree
k be proportional to k + A(t), where A(t) is some additional attractiveness of
vertices. Two particular cases of this linear preferential linking are considered
below in the framework of a simple continuum approach [5, 9, 48].

6.5.1 Model for γ < 2

If the additional attractiveness is constant, A = const, the continuum equation
for the average in-degree k(s, t) of individual vertices that born at time s and
are observed at time t is of the form

∂k(s, t)
∂t

= c0t
a k(s, t) +A
∫ t
0 du[k(u, t) +A]

(6.16)

with additional starting and boundary conditions k(0, 0) = 0 and k(t, t) = 0.
Here we supposed that new vertices have no incoming edges. We use this
assumption only for brevity. Naturally, the total in-degree of the network is∫ t
0 duk(u, t) = c0t

a+1/(a + 1). This also can be seen by integrating both the
sides of (6.16) over s. Taking into account the last equality yields the solution
of (6.16):
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k(s, t) = A
(s

t

)−(a+1)
. (6.17)

Therefore, β exponent equals a + 1 > 1, so that using scaling relation (6.12)
gives

γ = 1 +
1

a+ 1
< 2 . (6.18)

One may also apply the following simple relation of the continuum approach:

P (k, t) =
1
t

∫ t

0
ds δ(k − k(s, t)) = −1

t

(
∂k(s, t)
∂s

)−1
∣
∣
∣
∣
∣
s=k(s,t)

. (6.19)

This equality follows from the fact that the solution of the master equation for
the probability p(k, s, t) in the continuum approximation is the δ-function. From
(6.17) and (6.18) we obtain the in-degree distribution

P (k, t) =
A1/(a+1)

a+ 1
k−[1+1/(a+1)] , (6.20)

which is stationary. We have shown in Sect. 6.3 that when γ = 1 + 1/(a + 1),
the (in-) degree distribution must be stationary, and exponent z is zero. This is
the case for the network under consideration.

6.5.2 Model for γ > 2

Now we choose a different rule of attachment of new edges to vertices. Let the
additional attractiveness be time dependent. Furthermore, let it be proportional
to the average in-degree of the network, c0ta/(a + 1), at the birth of an edge,
A(t) = Bc0t

a/(a+ 1)). Here B > 0 is some constant. Analogously to the above
we obtain the non-stationary in-degree distribution

P (k, t) ∼ ta(1+B)/(1−Ba)k−[1+(1+B)/(1−Ba)] (6.21)

for k � ta. Hence the γ exponent is

γ = 1 +
1 +B

1 −Ba
> 2 . (6.22)

The scaling regime is realized when Ba < 1.
It is known that the used continuous approach gives exact results for the

scaling exponents of the growing networks with a constant density of connections
[7]. Nevertheless, it is approximate, so we have checked the obtained above results
by simulation.

The results of the simulation of considered models are shown in Figs. 6.8
and 6.9. The size of networks in both studied cases is 10000 sites. The number of
the attempts equals 1000. In Fig. 6.8, we present the log-log plots of the average
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Fig. 6.7. Phase diagram of the networks with the accelerating growth under conside-
ration. The networks are out of the class of scale-free nets (“exponential”) above the
line α = 1/B. The exponent γ equals 3 on the dashed line and 2.1 (value for the World
Wide Web) on the dash-dotted one. γ < 2 on the line B = 0

Fig. 6.8. Log-log plot of the average connectivity of a site vs its number (birth time)
for the considered models. For the first model, α = 0.5, n = 1, A = 1.0, c0 = 1.0. For
the second model, α = 0.5, n = 1, B = 0.15, c0 = 1.0. The dashed lines have the slopes
equal to the values of the scaling exponent β obtained analytically

connectivity vs number of a site for α = 0.5, n = 1, A = 1.0, c0 = 1.0 (the first
model) and for α = 0.5, n = 1, B = 0.15, c0 = 1.0 (the second one). In Fig. 6.9,
for these values of parameters of the models, we show the log-log plots of the
connectivity distribution.

The obtained values of the scaling exponents are within the error of the simu-
lation from the corresponding ones found analytically. The values β = 1.46 (1.5)
are obtained from the simulation and analytically (in brackets) for the first mo-
del with the written out parameters, β = 0.85 (0.804) are the corresponding
values for the second model.

γ = 1.69 (1.667) and γ = 2.19 (2.243) are the values of the critical exponent
of the connectivity distribution obtained for the first and for the second models,
relatively. One may see that the correspondence is really good.
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Fig. 6.9. Log-log plot of the distribution of the number of incoming links of sites
for the considered models. For the first model, α = 0.5, n = 1, A = 1.0, c0 = 1.0.
For the second model, α = 0.5, n = 1, B = 0.15, c0 = 1.0. The dashed lines have the
slopes equal to the values of the scaling exponent γ obtained analytically. For better
presentation, the dependences are displaced along the vertical axis

Several different values of the scaling exponent of the distribution of incoming
links in the World Wide Web were published (as far as we know, any data on
the exponent β are absent yet). The available data are γ = 2.1 [52, 53, 14]. The
most huge area was studied in [14], so the value γ = 2.1 seems to be the best
one. As we have noted, one may assume reasonably that α is small in the real
networks. We have shown that, in such a situation, the lower boundary for the
possible values of γ is slightly below 2. We have demonstrated that, for γ > 2, the
connectivity distribution has to be non-stationary if the growth of the network
is accelerating.

There are no data that let us learn whether the connectivity distributions of
the World Wide Web and the Internet are stationary or not. Our results make
this question intriguing.

The World Wide Web is still in the initial stage of its evolution. Perhaps,
the parameters of the accelerating growth will change. In this case, our answers
demonstrate the possibility of changing of γ. We have shown that it may become
even less than 2 in future.

To demonstrate all the existing possibilities we have considered the models
of growing networks with the particular rules of the preferential attachment of
new links. These models cover the range of possibilities but provide us only
with particular values of the scaling exponents. Of course, there exists a lot of
additional factors (aging [9] and mortality [8, 9] of sites, etc.) which may change
these particular values.
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6.6 One Practical Example: The Word Web

The weak point of network science is the absence of a convincing comparison of
numerous schematic models with real networks. Most of models of growing net-
works only demonstrate intriguing effects but, in fact, are very var from reality.
Available empirical data usually can be explained by applying various models
with fitting parameters. As a rule, only the exponent of the empirical degree
distribution is used for comparison.

Here we consider an exceptional situation, where a reasonable comparison
of the model of a growing network with empirical data is possible without any
fitting. Moreover, it is the idea of the accelerated growth that yields an excellent
agreement.

The problem of human language is a matter of immense interest of various
sciences. How did language begin? How does language evolve? What is its struc-
ture? Quite recently, a novel approach to language was proposed [49]. Human
language was considered as a complex network of interacting words. Vertices in
this Word Web are distinct words of language, and undirected edges are connec-
tions between interacting words.

Words interact when they meet in sentences. Different reasonable definitions
yield very similar structures of the Word Web. For example, we can connect the
nearest neighbors in sentences. This means that the edge between two words of
language exists if these words are the nearest neighbors in at least one sentence in
the bank of language. One sees that multiple connections are absent. Of course,
this is a rather naive definition, but it is also possible to account for other types
of correlations between words in a sentence [49]. The resulting network gives the
image of language, which is available for statistical analysis.

The empirical degree distribution [49] of the Word Web is very complex (see
Fig. 6.10). Therefore, a perfect description of these data without fitting would be
convincing. Indeed, it is hardly possible to describe such a complex form of the
distribution completely by coincidence. We show below that a minimal model
of the evolving Word Web [50], with only known parameters of this network,
provides such a perfect description.

In [49], the Word Web was constructed after processing 3/4 million words of
the British National Corpus. The British Corpus is a collection of text samples
of both spoken and written modern British English. The resulting network con-
tains about 470 000 vertices. The average degree is k ≈ 72. These are the only
parameters of the network we know and can use in the model.

Notice that the quality of the empirical data is [49] is high: the range of
degrees is five decades. The empirical degree distribution has two power-law
regions with exponents 1.5 and about 3 (the latter value is less precise, since
statistics in this region is worse). The crossover point and the cutoff due to
finite-size effect can be easily indicated (see Fig. 6.10).

We treat language as a growing network of interacting words. At its birth, a
new word already interacts with several old ones. New interactions between old
words emerge from time to time, and new edges emerge. All the time a word



106 J.F.F. Mendes

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Numbers of connections of words, k

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

D
is

tr
ib

ut
io

n 
of

 n
um

be
rs

 o
f c

on
ne

ct
io

ns
, P

(k
)

k cross cut
k

Fig. 6.10. Empirical degree distribution of the Word Web (points) [49]. Empty and
filled circles correspond to different definitions of the interactions between words in
sentences. The solid line [50] shows the result of our calculations using the known
parameters of the Word Web, namely the size t ≈ 470 000 and the average number
of connections, k(t) ≈ 72. The arrows indicate the theoretically obtained point of
crossover, kcross, between the regions with exponents 3/2 and 3, and the cutoff kcut of
the power-law dependence due to finite-size effect

cmt

old word webnew word

Fig. 6.11. Scheme of the Word Web growth. At each time step a new word emerge,
so that t is the total number of words. It connects to m ∼ 1 preferentially chosen old
words. Simultaneously cmt new edges emerge between pairs of preferentially chosen old
words. We use the simplest rule of the preferential attachment when a node is chosen
with the probability proportional to the number of its connections

lives, it enters in new “collaborations”. Therefore the number of connections
grows more rapidly than the number of words: the growth of the Word Web is
accelerated.

How do words find their collaborators in language? Here we again use the idea
of preferential linking [4], again the principle “popularity is attractive” works.

We use the following rules of the network growth (see Fig. 6.11) [50].
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(1) At each time step, a new vertex (word) is added to the network, and the
total number of words is t.

(2) At its birth, a new word connects to several old ons. Let, in average,
this number be m, so that this number is not necessary integer. We use the
simplest natural version of preferential linking: a new word become connected
with some old one i with the probability proportional to its degree ki, like in the
Barabasi-Albert model [4].

(3) In addition, cmt new edges emerge between old words, where c is a
constant coefficient that characterizes a particular network. If each vertex makes
new connections with a constant rate, this linear dependence on time naturally
arises. These new edges emerge between old words i and j with the probability
proportional to the product of their degrees kikj [10].

These simple rules define the minimal model that can be solved exactly. Here
we discuss only the results of the continuum approach. In this case, the approach
gives an excellent description of the degree distribution and the proper values of
exponents.

In the model that we discuss, words are actually considered as collabora-
tors in language. In our approach the essence of the evolution of language is
the evolution of collaborations between words. Therefore the situation for the
Word Web should be rather similar to that for networks of collaborations. The
equivalent model was applied to scientific collaboration nets [26], but the more
complex nature of these networks makes the comparison impossible.

As above, in the continuum approximation, we can write the equation for
the average degree at time t of the word that emerged at time s:

∂k(s, t)
∂t

= (m+ 2cmt)
k(s, t)

∫ t
0 du k(u, t)

, (6.23)

where the initial condition is k(0, 0) = 0 and the boundary one is k(t, t) = m.
One can see that the total degree of the network is

∫ t
0 du k(u, t) = 2mt+cmt2,

so that its average degree at time t is equal to k(t) = 2m+ cmt.
The solution of (6.23) is of a singular form

k(s, t) = m

(
cmt

cms

)1/2 ( 2m+ cmt

2m+ cms

)3/2

. (6.24)

The form of this equation indicates the presence of two distinct regimes in this
problem. Using (6.19) and (6.24) readily yields the non-stationary degree distri-
bution

P (k, t) =
1
ct

cs(2 + cs)
1 + cs

1
k
, (6.25)

where s = s(k, t) is the solution of (6.24). Notice that, formally speaking, the
number m is absent in (6.25). This is the consequence of our definition of the
coefficient cm (see above).
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From (6.24) and (6.25), one sees that the non-stationary degree distribution
has two regions with different behaviors separated by the crossover point

kcross ≈ m
√
ct(2 + ct)3/2 . (6.26)

The crossover moves in the direction of large degrees as the network grows. Below
this point, the degree distribution is stationary,

P (k) ∼=
√
m

2
k−3/2 . (6.27)

Above the crossover point, we obtain the behavior

P (k, t) ∼= (2m+ cmt)3

4
k−3 . (6.28)

so that the degree distribution is non-stationary in this region. Thus, we have
obtain two distinct values for the degree distribution exponent, namely, 3/2 and
3.

The model that we consider has two limiting cases. When c = 0, it turns to
be the Barabási-Albert model, where γ = 3. When m is small but cm is large, we
come to the network from Sect. 6.5.1 which has γ = 3/2 and a stationary degree
distribution. Thus these two values of γ are not surprising. The important point
is that the crossover is observable even though cmt � m.

The degree distribution has one more important point, the cutoff produced by
finite-size effect. We estimate its position from the condition t

∫ ∞
kcut

dkP (k, t) ∼ 1
(see Sects. 6.2 and 6.3). This yields

kcut ∼
√
t

8
(2m+ cmt)3/2 . (6.29)

Using (6.26) and (6.28) one can estimate the number of words above the
crossover:

Nc ≈ t

∫ ∞

kcross

dkP (k, t) ∼ m

8c
. (6.30)

We know only two parameters of the Word Web that was constructed in [49],
namely t = 0.470 × 106 and k(t) = 72 = 2m + cmt ≈ cmt. About m we know
only that it is of the order of 1. From the above relations, one sees that the
dependence on m is actually weak and is not noticeable in log-log-scale plots. In
fact, m is inessential parameter of the model. Hence we can set its value to 1.

In Fig. 6.10, we plot the degree distribution of the model (the solid line).
To obtain the theoretical curve, we used (6.24) and (6.25) with m = 1 and
c ≈ k(t)/t. A rather inessential deviations from the continuum approximation are
accounted for in the small-degree region (k ∼ 10). One sees that the agreement
with the empirical data [49] is fairly good. Note that we do not used any fitting.
However, for a better comparison, in Fig. 6.10, the theoretical curve is displaced
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upwards. Actually, this is not a fitting, since we have to exclude two empirical
points with the smallest degrees. These points are dependent on the method of
the construction of the Word Web, on specific grammar, so that any comparison
in this region is meaningless in principle.

From (6.26) and (6.29), we find the characteristic values for the crossover
and cutoff, kcross ≈ 5.1 × 103, that is, log10 kcross ≈ 3.7, and log10 kcut ≈ 5.2.
From Fig. 6.10 we see that these values coincide with the experimental ones. We
should emphasize that the extent of agreement is truly surprising. The minimal
model does not account for numerous, at first sight, important factors, e.g., the
death of words, the variations of words during the evolution of language, etc.

The agreement is convincing since it is approached over the whole range of
values of k, that is, over five decades. In fact, the Word Web turns out to be
very convenient in this respect since the total number of edges in it is extremely
high, about 3.4 × 107 edges, and the value of the cutoff degree is large.

Note that few words are in the region above the crossover point kcross ≈
5.1×103. These words have a different structure of connections than words from
the rest part of language. With the growth of language, kcross increases rapidly
but, as it follows from (6.30), the total number Nc of words of degree greater
than kcross does not change. It is a constant of the order ofm2/(8cm) ∼ 1/(8c) ≈
t/(8k) ∼ 103, that is of the order of the size of a small set of words forming the
kernel lexicon of the British English which was estimated as 5, 000 words [51]
and is the most important core part of language. Therefore, our concept suggests
that the number of words in this part of language does not depend essentially of
the size of language. Formally speaking, the size of this core determined by the
value of the average rate c with which words find new partners in language.

If our simple theory of the evolution of language is reasonable then the sizes
of the cores of primitive languages are close to those for modern “developed”
languages.

6.7 Conclusions

The nonlinear growth of networks is a more general situation than the linear
growth. In real evolving networks, the nonlinear, in particular, accelerated gro-
wth is widespread and is the rule and not the exception. In many cases, it is
impossible to understand the nature of an evolving network without accounting
for this acceleration.

The complicating circumstance is that existing empirical data clearly indi-
cate the presence of the acceleration but usually fail to yield its quantitative
description. Theoreticians may easily choose any functional form for the non-
linear growth, but do these beautiful dependences have any relation to reality?

We have described the possible degree distributions of such networks and
have fixed the lower boundary for the scaling exponent γ. Only the power-law
time-dependence of the input flow of new links can keep the network inside of
the class of scale-free networks. Nevertheless, we have found the region of para-
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meters in which the scale-free structure is impossible. Our results demonstrate
the possibility of quite different scenarios for the network evolution and let us
hope to approach satisfactory description of the real networks.

The described theory was then extended and applied to the Word Web (evol-
ving networks of interacting words). The key result is the distribution of numbers
of connections of words. We have found that the self-organization produces the
most connected small kernel lexicon of language, size of which does not change
essentially along the language evolution. The degree distribution of words in this
core of language crucially differs from the degree distribution of the rest.
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26. A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, Evolu-

tion of the social network of scientific collaborations, cond-mat/0104162
27. Jeong, H., Mason, S. P., Barabási, A.-L. and Oltvai, Z. N., Lethality and centrality

in protein networks, Nature, 411, 41 (2001)
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Abstract. Many complex systems can be described in terms of networks of interacting
units. Recent studies have shown that a wide class of both natural and artificial nets
display a surprisingly widespread feature: the presence of highly heterogeneous distri-
butions of links, providing an extraordinary source of robustness against perturbations.
Although most theories concerning the origin of these topologies use growing graphs,
here we show that a simple optimization process can also account for the observed re-
gularities displayed by most complex nets. Using an evolutionary algorithm involving
minimization of link density and average distance, four major types of networks are
encountered: (a) sparse exponential-like networks, (b) sparse scale-free networks, (c)
star networks and (d) highly dense networks, apparently defining three major phases.
These constraints provide a new explanation for scaling of exponent about −3. The
evolutionary consequences of these results are outlined.

7.1 Introduction

Many essential features displayed by complex systems, such as memory, stabi-
lity and homeostasis emerge from their underlying network structure [26, 14].
Different networks exhibit different features at different levels but most complex
networks are extremely sparse and exhibit the so-called small-world phenomenon
[28]. An inverse measure of sparseness, the so-called network density, is defined
as

ρ =
〈k〉
n− 1

(7.1)

where n is the number of vertices of the network and 〈k〉 is its average degree.
For real networks we have ρ ∈ [10−5, 10−1]3.

It has been shown that a wide range of real networks can be described by
a degree distribution P (k) ∼ k−γφ(k/ξ) where φ(k/ξ) introduces a cut-off at
some characteristic scale ξ. Three main classes can be defined [2]. (a) When ξ
is very small, P (k) ∼ φ(k/ξ) and thus the link distribution is single-scaled. Ty-
pically, this would correspond to exponential or Gaussian distributions; (b) as
ξ grows, a power law with a sharp cut-off is obtained; (c) for large ξ, scale-free
nets are observed. The last two cases have been shown to be widespread and
3 Statistics performed on Table I in [5]
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Fig. 7.1. Basic scheme of the minimization algorithm. Starting from a given adjacency
matrix A the algorithm performs a change in a small number of bits (specifically, with
probability ν, each aij can flip). The energy function e is then evaluated and the new
matrix is accepted provided that a lower cost is achieved. Otherwise, we start again
with the original matrix. At the beginning, A is set up with a fixed density ρ(0) of
ones

their topological properties have immediate consequences for network robustn-
ess and fragility [5]. The three previous scenarios are observed in: (a) power grid
systems and neural networks [2], (b) protein interaction maps [12], metabolic pa-
thways [13] and electronic circuits [16] and (c) Internet topology [13, 8], scientific
collaborations [20] and [17] lexical networks.

7.2 Network Optimization

Scale-free nets are particularly relevant due to their extremely high homeostasis
against random perturbations and fragility against removal of highly connected
nodes[1]. These observations have important consequences, from evolution to
therapy [12]. One possible explanation for the origin of the observed distributions
would be the presence of some (decentralized) optimization process.

Network optimization is actually known to play a leading role in explaining
allometric scaling in biology [29, 7, 3] and has been shown to be a driving force in
shaping neural wiring at different scales [9, 18] (see also [6]). In a related context,
local and/or global optimization has been also shown to provide remarkable
results within the context of channel networks [22]. By using optimality criteria
linking energy dissipation and runoff production, the fractal properties in the
model channel nets were essentially indistinguishable from those observed in
nature. Figure 7.2 displays different optimal transportation networks.
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BA

Fig. 7.2. Optimal transport networks in biology (A) and geomorphology (B). A. An
optimal tree structure that has been obtained for a vascular system on a two dimensio-
nal perfusion area [7]. B. An optimal river basin network (also displaying tree structure)
that has been generated by minimizing energy expenditure [22]

Several mechanisms of network evolution lead to scale-free structures within
the context of complex networks in which the only relevant elements are vertices
and connections [4]. Optimization has not been found to be one of them [5]. In
this context, it was shown that (Metropolis-based) minimization of both vertex-
vertex distance and link length (i.e. Euclidean distance between vertices)[15] can
lead to the small-world phenomenon and hub formation. This view takes into
account Euclidean distance between vertices. Here we show how minimizing both
vertex-vertex distance and the number of links leads (under certain conditions)
to the different types of network topologies depending on the weight given to
each constraint. These two constraints include two relevant aspects of network
performance: the cost of physical links between units and communication speed
among them.

7.3 The Optimization Algorithm

For the sake of simplicity, we take an undirected graph having a fixed number of
nodes n and links defined by a binary adjacency matrix A = {aij}, 1 ≤ i, j ≤ n.
Given a pair of vertices i and j, aij = 1 if they are linked (aij = 0 otherwise) and
Dij is the minimum distance between them. At time t = 0, we have a randomly
wired graph (i.e. a Poisson degree distribution) in which two given nodes are
connected with some probability p. The energy function of our optimization
algorithm is defined as

E(λ) = λd+ (1 − λ)ρ

where 0 ≤ λ, d, ρ ≤ 1 . λ is a parameter controlling the linear combination of d
and ρ. The normalized number of links, ρ is defined in terms of aij as
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ρ =
1
(
n
2

)
∑

i<j

aij

and it is equivalent to (7.1). The normalized vertex-vertex distance, d, is defined
as d = D/Dlinear being

D =
1
(
n
2

)
∑

i<j

Dij

the average minimum vertex-vertex distance and Dlinear = (n+ 1)/3 the maxi-
mum value of D that can be achieved by a connected network, that is, that of a
linear graph (see Appendix). We define a linear graph as a graph having 2 ver-
tices with degree 1 and n− 2 vertices with degree 24. A graph whose adjacency
matrix satisfies

aij =
{

1 if |i− j| = 1
0 otherwise (7.2)

is a linear graph. Such a graph has the maximum average vertex-vertex distance
that can be achieved by a connected graph of order n (see Appendix).

The minimization of E(λ) involves the simultaneous minimization of distance
and number of links (which is associated to cost). Notice that minimizing E(λ)
implies connectedness (i.e. finite vertex-vertex distance) except for λ = 0, where
it will be explicitly enforced.

The minimization algorithm proceeds as follows. At time t = 0, the net-
work is set up with a density ρ(0) following a Poissonian distribution of degrees
(connectedness is enforced). At time t > 0, the graph is modified by randomly
changing the state of some pairs of vertices. Specifically, with probability ν, each
aij can switch from 0 to 1 or from 1 to 0. The new adjacency matrix is accepted
if E(λ, t+ 1) < E(λ, t). Otherwise, we try again with a different set of changes.
The algorithm stops when the modifications on A(t) are not accepted T times in
a row. The minimization algorithm is a simulated annealing at zero temperature.
Figure 7.1 describes the minimization algorithm. Hereafter, n = 1005, T =

(
n
2

)
6,

2/
(
n
2

)
7 and ρ(0) = 0.2.

4 It can be easily shown through induction on n that such a graph is connected and
has no cycles.

5 Higher values of n were very time consuming. The critical part of the algorithm
is the calculation of d which has cost Θ(nρ

(
n
2

)
), that is, Ω(n2) and O(n3). Faster

calculation implies performing an estimation of d on a random subset of vertices or
1st and 2nd neighbors [21] that happened to be misleading.

6 Intended for expecting that every pair of vertices has been allowed to change its
state at least once.

7 We define the number of changes in the adjacency matrix between generations as
c = | {aij(t + 1)|i < j and aij(t + 1) �= aij(t)} |. Let d(t) and ρ(t) be respectively the
distance and the density at time t. If c = 1 then d(t + 1) < d(t) and ρ(t + 1) = ρ(t)
is impossible. If c > 1 then d(t+1) < d(t) with ρ(t+1) = ρ(t) is allowed. Thereafter
ν is set to enforce E[c] = 2 > 1.
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Fig. 7.3. Density (A), energy (B), clustering coefficient (C) and distance (D) as a
function of λ. Averages over 50 optimized networks with n = 100, T =

(
n
2

)
, ν = 2/

(
n
2

)

and ρ(0) = 0.2 are shown. A: the optimal network becomes a complete graph for λ
close to 1. The density of a star network, ρstar = 2/n = 0.02 is shown as reference
(dashed line). The clustering coefficient of a Poissonian network Crandom = 〈k〉/(n−1)
is shown as reference in C. Notice that Crandom ≈ ρ. The normalized distance of a star
network is (see Appendix), dstar = 6(n − 1)/(n(n + 1)) = 0.058 (dashed line) and that
of a Poissonian network, drandom = log n/log 〈k〉 (dotted line) are shown for reference
in D

We define the degree entropy on a certain value of λ as

H({pk}) = −
n−1∑

k=1

pk log pk

where pk is the frequency of vertices having degree k and
∑n−1
k=1 pk = 1. This

type of informational entropy will be used in our characterization of the different
phases8.

Some of the basic average properties displayed by the optimized nets are
shown against λ in Fig. 7.3. These plots, together with the degree entropy in
Fig. 7.4 suggest that four phases are present, separated by three sharp transitions
at λ∗

1 ≈ 0.25, λ∗
2 ≈ 0.80 and λ∗

3 ≈ 0.95 (see arrows in Fig. 7.3). The second one
8 Entropy measures of this type have been used in characterizing optimal channel

networks and other models of complex systems (see [24]) although they are typically
averaged over time.
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Fig. 7.4. Average (over 50 replicas) degree entropy as a function of λ with n = 100,
T =

(
n
2

)
, ν = 2/

(
n
2

)
and ρ(0) = 0.2. Optimal networks for selected values of λ are

plotted. The entropy of a star network, Hstar = log n − [(n − 1)/n] log(n − 1) = 0.056
is provided as reference (dashed line). A: an exponential-like network with λ = 0.01.
B: A scale-free network with λ = 0.08. Hubs involving multiple connections and a
dominance of nodes with one connection can be seen. C: a star network with λ = 0.5.
B’: a intermediate graph between B and C in which many hubs can be identified

separates sparse nets from dense nets and fluctuations in H(λ∗
3) are specially

high. ρ(λ), C(λ) ≈ 1 for λ > λ∗
3 ≈ 0.95. For λ = 0 and λ = 1 a Poissonian and a

complete (ρ(λ) = 1) network are predicted, respectively.

7.4 Optimal Degree Distributions

When taking a more careful look at the sparse domain (0, λ∗
2), three non-trivial

types of networks are obtained as λ grows:

a. Exponential networks, i. e. Pk ∼ e−k/ξ.
b. Truncated scale-free networks, i. e. Pk ∼ k−γe−k/ξ with γ = 3.0 and ξ ≈ 20

(for n = 100).
c. Star network phase (λ∗

1 < λ < λ∗
2) i.e. a central vertex to which the rest of

the vertices are connected to (no other connections are possible). Here,
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Fig. 7.5. Selected cumulative degree distributions of networks obtained minimizing
E(λ). Every distribution is an average over 50 optimized networks with n = 100,
T =

(
n
2

)
, ν = 2/

(
n
2

)
and ρ(0) = 0.2. A: an exponential-like distribution for λ = 0.01.

B: a power distribution with exponent γ = 2.0 for λ = 0.08 (with a sharp cutoff at
ξ ≈ 20). C: λ = 0.20. D: λ = 0.50 (almost an star graph)

pk =
n− 1
n

δk,1 +
1
n
δk,n−1 (7.3)

A star graph has the shortest vertex-vertex distance between vertices among
all the graphs having a minimal amount of links (see Appendix). Non-minimal
densities can be compensated with a decrease in distance, so pure star net-
works are not generally obtained.

The distributions of (a-c) types and that of a dense network are shown in
Fig. 7.5. A detailed examination of the transition between degree distributions
reveals that hub formation explains the emergence of (b) from (a), hub compe-
tition (b’) precedes the emergence of a central vertex in (c). The emergence of
dense graphs from (c) consists of a progressive increase in the average degree
of non-central vertices and a sudden loss of the central vertex. The transition
to the star net phase is sharp. Figure 7.4 shows 〈H(λ)〉 along with plots of the
major types of networks. It can be seen that scale-free networks (b) are found
close to λ∗

1. The cumulative exponent of such scale-free networks is two and thus
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Fig. 7.6. A. The function Γ (λ) = (1 − d(λ))/ρ(λ) for the minimum energy configura-
tions. B. The cost function S/ρ versus ρ for the Poissonian model

γ = 3.0, the same that it would be expected for a random network generated
with the Barabási-Albert model [4].

Our scenario suggests that preferential attachment networks might emerge at
the boundary between random attachment networks (a) and forced attachment
(i.e. every vertex connected to a central vertex) networks (c) and points that
optimization can explain the selection of preferential attachment strategies in
real complex networks. In our study, exponential-like distributions appear when
distance is minimized under high density pressure, in agreement with the study
by Amaral and co-workers on classes of small-world networks [2]. This might be
the case of the power grid and of neural networks [2]. If linking cost decreases suf-
ficiently, cliquishness becomes an affordable strategy for reducing vertex-vertex
distance. Consistently, graphs tend to a complete graph for high values of λ. The
Watts model [28] is a non-trivial example of what cliquishness (i.e. high cluste-
ring) can do for smallwordness. High clustering favours small-worldness (as seen
for λ ≥ λ∗

2) but it is not the only mechanism [10].
We have seen the different optimal topologies depending on the value of λ.

We are aimed at defining an absolute measure of optimality depending on λ we
can use for ranking the different topologies. We define

Γ (λ) =
1 − d(λ)
ρ(λ)

(7.4)

as such measure (Fig. 7.6A). A sharp transition from sparse to dense networks
is clearly observed for λ ≈ 0.8. According to Fig. 7.6A, the topology ranking
becomes,

1. Star networks.
2. Scale-free networks.
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3. Exponential networks.
4. Dense networks.

See the Appendix section for a summary of the basic features of the trivial
topologies appearing in our study.

A simpler version of the previous scenario appears in the context of Pois-
sonian graphs, where we define the optimality measure as S/ρ, where S is the
number of vertices of the largest connected component and ρ is both the ex-
pected network density and the probability that a random pair of vertices are
linked. Again, the maximum divides networks into disconnected networks and
connected networks at high link expense (Fig. 7.6B). ρ ≈ 0.8 divides low cost
strategies from high cost strategies as λ = 0.8 does in Fig. 7.6A. Notice that
the transition is smooth for the former and sharp for the latter. The Poissonian
scenario shows the optimization principles that may guide networks in early sta-
ges to remain close to the connectedness transition. Once enough connectedness
is achieved, networks may be guided by (7.4) or particular values of λ depending
on the system.

7.5 Discussion

The network previous results and our conjecture concerning optimization in com-
plex nets requires explaining why star graphs are not found in nature. Different
constraints can be restricting the access of star graphs to real systems. Let us
list some of them:

– Randomness. The evolution of the topology as λ grows suggests a transition
from disorder (exponential degree distribution) to order (star degree distri-
bution).

– Diversity. The number of different star graphs that can be formed with n
vertices is n whereas it explodes for exponential and power distributions.

– Robustness. Removing the central hub leaves n − 1 connected components,
which is the worst case situation.

Whether or not optimization plays a key role in shaping the evolution of
complex networks, both natural and artificial, is an important question. Diffe-
rent mechanisms have been suggested to explain the emergence of the striking
features displayed by complex networks. Most mechanisms rely on preferential
attachment-related rules, but other scenarios have also been suggested [25, 27] in
which external parameters have to be tuned. When dealing with biological net-
works, the interplay between emergent properties derived from network growth
and selection pressures has to be taken into account. As an example, metabolic
networks seem to result from an evolutionary history in which both preferential
attachment and optimization are present. The topology displayed by metabolic
networks is scale-free, and the underlying evolutionary history of these nets sug-
gests that preferential attachment might have been involved [11]. Early in the
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evolution of life, metabolic nets grew by adding new metabolites, and the most
connected are actually known to be the oldest ones. On the other hand, several
studies have revealed that metabolic pathways have been optimized through evo-
lution in a number of ways. This suggests that the resulting networks are the
outcome of both contributions, plus some additional constraints imposed by the
available components to the evolving network [19, 23]. In this sense, selective
pressures might work by tuning underlying rules of net construction. This view
corresponds to Kauffman’s suggestion that evolution would operate by taking
advantage of some robust, generic mechanisms of structure formation [14].

Appendix

Throughout this paper, different trivial topologies have appeared. Table 7.1 sum-
marizes their features indicating the value of λ at which they appear. Although
this paper is concerned with what happens for λ ≥ 0, notice that the linear
graph is the expected outcome for λ < 0, since it implies distance maximization
and density minimization. The remaining of this section is devoted to proof that
a linear graph and a star graph have the maximum finite distance and the mi-
nimum distance (with the constraints of connectedness and having the smallest
amount of edges).

A linear graph is a graph having the maximum finite distance or in other
words, it is the connected graph having the maximum distance. We will proof it
through induction on n. For n = 2, there is only one possible connected graph,
which trivially has the maximum distance. All linear graphs having the same
amount of vertices have the same average vertex-vertex distance. If the graph
in (7.2) has the maximum distance for n vertices, will it still be the longest for
n+1 vertices? Assuming that the graph in (7.2) is the longest for n vertices, the
longest graph of n+ 1 vertices has to be formed by the longest graph of order n
and a new a vertex linked to one of the n existing vertices. Here we define the
total vertex-vertex distance as

Dn =
∑

i<j

Dn(i, j) (7.5)

Table 7.1. Different trivial topologies with density (i.e. normalized amount of links) ρ,
average vertex-vertex distance D, clustering coefficient C, degree distribution entropy
H and the values of λ where they are optimal. − indicates absence of known analytical
result

Topology ρ D C H λ

Poisson ρ ≈ logn
log(ρ(n−1)) ρ − 0

Star 2/n 2(n−1)
n

0 logn − (n−1)
n

log(n − 1) −
Complete 1 1 1 0 1

Linear 2/n n+1
3 0

1
n
((n − 2)log(n − 2) + 2log2)

−logn
λ < 0
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where Dn(i, j) is the minimum distance from the i-th vertex to the j-th vertex.
We define the average vertex vertex distance as

< Dn >= Dn/

(
n

2

)

If Dk
n+1 is the contribution to Dn+1 when the new vertex is linked to the k-th

existing vertex, 1 ≤ k ≤ n, such an n+ 1-vertex graph obeys

Dn+1 = Dn +Dk
n+1 (7.6)

where

Dk
n+1 =

k∑

i=1

i+
n−k+1∑

i=2

i

Previous equation leads to

Dk
n+1 =

(
n+ 1

2

)

(7.7)

for k = 1 and k = n. In general,

Dk
n+1 = k2 − (n+ 1)k +

n2 + 3n
2

Dk
n+1 has one single non-assymptotical minimum (at k∗ = (n−1)/2) and no non-

assymptotical maximum so Dk
n is maximal for k = 1 and k = n and 1 ≤ k ≤ n.

k = 1 or k = n correspond to a graph order n+ 1 satisfying (7.2), as we wanted
to proof.

Substituting (7.7) into (7.6), we get the longest graph of order n satisfys

Dn = Dn−1 +
(
n

2

)

Expanding the previous recursion we get

Dn =
n∑

i=2

(
n

2

)

=
1
2

(
n∑

i=1

i2 −
n∑

i=1

i

)

After some algebra we have Dn = n(n2 − 1)/6 and thus < Dn >= (n+ 1)/3
It can also be shown through induction on n that a star graph with a degree

distribution

pk =
n− 1
n

δk,1 +
1
n
δk,n−1 (7.8)

has the minimum distance possible among all possible graphs having n−1 links.
For n = 2, the only connected graph (and thus the only with finite distance)
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trivially is the best one having n−1 links. If we assume that the graph described
in (7.8) is the optimal for n vertices, the optimal graph of n + 1 vertices has
dn+1 = dn + ∆k

n+1 where ∆k
n+1 is the contribution to Dn+1 of the new vertex

when linked to the k-th existing vertex. Thereafter, ∆1
n+1 = 2n− 1 and ∆k

n+1 =
3(n − 1) for 1 < k ≤ n. ∆1

n+1 < ∆k>1
n+1 holds for n > 2, so the graph of order

n+ 1 obeying (7.8) is also the best one with n− 1 links.
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Abstract. We review the behavior of epidemic spreading on complex networks in
which there are explicit correlations among the degrees of connected vertices.

8.1 Introduction

Complex networks arising in the modeling of many social, natural, and techno-
logical systems are often growing and self-organizing objects characterized by
peculiar topological properties [1, 2]. Many empirical evidences have prompted
that most of the times the resulting network’s topology exhibits emergent phe-
nomena which cannot be explained by merely extrapolating the local properties
of their constituents. Among these phenomena, two of them appear ubiquitous
in growing networks. The first one concerns the small-world property [3], that
is defined by an average path length—average distance between any pair of
vertices—increasing very slowly (usually logarithmically) with the network size,
N . The second one finds its manifestation in the scale-free (SF) degree dis-
tribution [1]. This implies that the probability P (k) that a vertex has degree
k—it is connected to k other vertices—is characterized by a power-law behavior
P (k) ∼ k−γ , where 2 < γ ≤ 3 is a characteristic exponent.

The statistical physics approach [1, 2] has been proved a very valuable tool
for the understanding and modeling of these emergent phenomena in growing
networks and has stimulated a more detailed topological characterization of se-
veral social and technological networks. In particular, it has been recognized that
many of these networks possess non-trivial degree correlations [4, 5, 6, 7]. The use
of statistical physics tools has also evidentiated several surprising results concer-
ning dynamical processes taking place on top of complex networks. In particular,
the absence of the percolation [8, 9] and epidemic [10, 11, 12, 13, 14, 15] thres-
holds in uncorrelated scale-free (SF) networks has hit the community because
of its potential practical implications. The absence of the percolative threshold,
indeed, prompts to an exceptional tolerance to random damages [16]. On the
other hand, the lack of any epidemic threshold makes SF networks the ideal
media for the propagation of infections, bugs, or unsolicited information [10].

R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera (Eds.): LNP 625, pp. 127–147, 2003.
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While the study of uncorrelated complex networks is a fundamental step in the
understanding of the physical properties of many systems[17], yet correlations
may drastically change the obtained results, as several recent works addressing
the effect of correlations in epidemic spreading have shown [18, 19, 20, 21, 22].

Here we want to provide a review of recent results concerning the epidemic
spreading in random correlated complex networks. We will consider the suscep-
tible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) models
[23, 24, 25] and we will provide an analytical description that includes two ver-
tices degree correlations in the dynamical evolution of the infection prevalence.
This will allow us to relate the presence or absence of epidemic threshold to the
eigenvalue spectra of certain connectivity matrices of the networks. In particular,
in the case of scale-free networks it is possible to show that for the SIS model,
a SF degree distribution P (k) ∼ k−γ with 2 < γ ≤ 3 in unstructured networks
with any kind of degree correlations is a sufficient condition for a null epidemic
threshold in the thermodynamic limit. For the SIR model, the same sufficient
condition applies if the minimum possible degree of the graph is kmin ≥ 2. The
SIR model with kmin = 1 has always a null threshold unless the SF behavior is
originated only by minimum degree vertices. In other words, under very gene-
ral conditions, the presence of two-point degree correlations does not alter the
extreme weakness of SF networks to epidemic diffusion. The present results are
derived from the divergence of the nearest neighbors average degree [4], which
stems from the degree detailed balance condition [21], to be satisfied in all phy-
sical networks.

8.2 Correlated Complex Networks

In the following we shall consider unstructured undirected networks, in which
all vertices within a given degree class can be considered statistically equivalent.
Thus our results will not apply to structured networks in which a distance or
time ordering can be defined; for instance, when the small-world property is
not present [26, 27]. We will consider in particular the subset of undirected
Markovian random networks [21], that are completely defined by the degree
distribution P (k) ant the conditional probability P (k′ | k) that a vertex of degree
k is connected to a vertex of degree k′. These two functions can have any form
and are assumed to be normalized, i.e.

∑

k

P (k) =
∑

k′
P (k′ | k) = 1. (8.1)

The term “Markovian” refers to the fact that, in our approximation, all higher-
order correlation functions can be obtained as a combination of the two fun-
damental functions P (k) and P (k′ | k). In fact, this approximation represents a
natural step towards a more complex description of real networks. In this sense,
the Erdös-Rényi (ER) model [28] (defined starting from a set of N vertices that
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are connected in pairs with an independent probability p) can be viewed as the
zero-th order approximation, where the average degree is the only fixed para-
meter. The ER model is thus defined by the ensemble of all possible networks
with a given average degree, but completely random at all other respects. The
first-order approximation has been recently introduced by realizing that many
real-world networked systems possess a more complex degree distribution than
that predicted by the ER model (a Poisson distribution [29]). In this approxi-
mation the whole degree distribution, P (k), is chosen as a constrain whereas
the rest of properties are left at random [30, 31, 32, 17]. Even though this ap-
proximation represents a quantitative step forward, it only takes into account
local properties and, therefore, it neglects possible correlations among different
vertices, correlations that, on the other hand, are present in real networks [4, 7].
Thus, it is quite natural to introduce the second-order approximation as that
with a fixed degree distribution, P (k), and a two-point correlation function,
P (k′ | k), but totally random to all other respects. As we will see, in this case the
approximation must be carefully made since, due to the two-point correlation
constrain, the fundamental functions P (k) and P (k′ | k) must satisfy a peculiar
detailed balance condition.

The degree distribution usually identifies two kinds of networks. A first class,
which includes classical models of random graphs [28], is characterized by an
exponentially bounded degree distribution. A second one refers to SF networks
in which the degree distribution takes the form P (k) ∼ Ck−γ , usually with
2 < γ ≤ 3 [1, 2]. In this case the network shows a very high level of degree
heterogeneity, signalled by unbounded degree fluctuations. Indeed, the second
moment of the degree distribution,

〈
k2
〉
, diverges in the thermodynamic limit

kc → ∞, where kc is the maximum degree of the network. It is worth recalling
that, in growing networks, kc is related to the network size N as kc ∼ N1/(γ−1)

[2]. Noticeably, it is the large degree heterogeneity of SF networks that is at the
origin of their extreme weakness towards epidemic spreading.

8.2.1 Assortative and Disassortative Mixing

A direct study of the conditional probability P (k′ | k) in data from real networks
usually yields results that are very noisy and difficult to interpret. In order to
characterize the degree correlations, it is more useful to work with the average
nearest neighbors degree (ANND) of the vertices of degree k [4], defined by

k̄nn(k) ≡
∑

k′
k′P (k′ | k), (8.2)

and to plot it as a function of the degree k. When two-point correlations
are not present in the network, the conditional probability takes the form
Pnc(k′ | k) = k′ P (k′)/ 〈k〉, and the ANND reads k̄ncnn(k) =

〈
k2
〉
/ 〈k〉, which

is independent on k. On the contrary, an explicit dependence of k̄nn(k) on k
necessary implies the existence of non-trivial correlations, as often measured in
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real networks [4, 7]. For instance, in many social networks it is observed that
vertices with high degree connect more preferably to highly connected verti-
ces; a property referred to as “assortative mixing”. In this case, k̄nn(k) is an
increasing function of k. On the opposite side, many technological and biolo-
gical networks show “disassortative mixing”; i.e. highly connected vertices are
preferably connected to vertices with low degree and, consequently, k̄nn(k) is a
decreasing function of k. Then, the ANND provides an easy and powerful way
to quantify two-point degree correlations, avoiding the fine details contained in
the full conditional probability P (k′ | k).

8.2.2 Degree Detailed Balance Condition

A key relation holding for all physical networks is that all edges must point from
one vertex to another. This rather obvious observation turns out to have impor-
tant implications since it forces the fundamental functions P (k) and P (k′ | k) to
satisfy the following degree detailed balance condition [21]

kP (k′ | k)P (k) = k′P (k | k′)P (k′). (8.3)

This condition states that the total number of edges pointing from vertices with
degree k to vertices of degree k′ must be equal to the total number of edges
that point from vertices with degree k′ to vertices of degree k. This relation
is extremely important since it constraints the possible form of the conditional
probability P (k′ | k) once P (k) is given. It may be surprising that such a detailed
balance condition exists since, in fact, networks are the result of a multiplicative
random process and, in principle, detailed balance conditions only holds for
systems driven by additive noise [33]. In fact, the usual detailed balance condition
is the same as (8.3) without the prefactors k and k′. These very prefactors
account for the multiplicative character of the network and (8.3) can be viewed
as a closure condition that guarantees the existence of the network. There is
a simple way to derive this condition. Let Nk be the number of vertices with
degree k. Obviously,

∑
kNk = N and, consequently, we can define the degree

distribution as

P (k) =
Nk
N
. (8.4)

The function P (k) alone does not define completely the topology of the network,
because it says nothing about how vertices are connected to each other. Thus, we
need to define additionally the matrix of connections among vertices of different
degrees. Let Nk,k′ be a symmetric matrix measuring the total number of edges
between vertices of degree k and vertices of degree k′, when k = k′, and two
times the number of self-connections, when k = k′. It is not difficult to realize
that this matrix fulfills the identities
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∑

k′
Nk,k′ = kNk. (8.5)

∑

k

∑

k′
Nk,k′ = 〈k〉N. (8.6)

The first of this relations simply states that the number of edges emanating from
all vertices of degree k is kNk, while the second indicates that the sum of all the
vertices’s degrees is equal to two times the number of edges. The identity (8.6)
allows us to define the joint probability

P (k, k′) =
Nk,k′

〈k〉N , (8.7)

where the symmetric function (2 − δk,k′)P (k, k′) is the probability that a ran-
domly chosen edge connects two vertices of degrees k and k′. The correlation
coefficient computed from this joint probability has been recently used in [7]
in order to quantify two-point degree correlations. The transition probability
P (k′ | k), defined as the probability that an edge from a k vertex points to a k′

vertex, can be easily written as

P (k′ | k) =
Nk′,k

kNk
≡ 〈k〉P (k, k′)

kP (k)
, (8.8)

from where the detailed balance condition arises as a consequence of the sym-
metry of P (k, k′) (or Nk,k′).

From the degree detailed balance condition it is possible to derive some
general exact results concerning the behavior of k̄nn(k, kc) and of

〈
k̄nn

〉
kc

=
∑
k P (k)k̄nn(k, kc) in SF networks [22]. In these two functions we have now

made explicit the kc dependence originated by the upper cut-off of the k sum
and that must be taken into account since it is a possible source of divergences
in the thermodynamic limit. The results that we will derive will turn out to be
fundamental in determining the epidemic spreading behavior in these networks.
Let us start by multiplying by a k factor both terms of (8.3) and summing over
k′ and k. We obtain

〈
k2〉 =

∑

k′
k′P (k′)

∑

k

kP (k | k′), (8.9)

In SF networks with 2 < γ < 3 we have that the second moment of the degree
distribution diverges as

〈
k2
〉 ∼ k3−γ

c
4. We thus obtain from (8.9), using the

definition (8.2),

∑

k′
k′P (k′)k̄nn(k′, kc) � C

(3 − γ)
k3−γ
c , (8.10)

4 For γ = 3 the second moment diverges as
〈
k2〉 ∼ ln kc but the argument, though

more involved, is still valid.
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where C is the constant prefactor from the degree distribution. In the case of
disassortative mixing [7], the function k̄nn(k′, kc) is decreasing with k′ and, since
k′P (k′) is an integrable function, the l.h.s. of (8.10) has no divergence related
to the sum over k′. This implies that the divergence must be contained in the
kc dependence of k̄nn(k′, kc). In other words, the function k̄nn(k′, kc) → ∞ for
kc → ∞ in a non-zero measure set. In the case of assortative mixing, k̄nn(k′, kc)
is an increasing function of k′ and, depending on its rate of growth, there may
be singularities associated to the sum over k′. Therefore, this case has to be
analyzed in detail. Let us assume that the ANND grows as k̄nn(k′, kc) � αk′β ,
β > 0, when k′ → ∞. If β < γ − 2, again there is no singularity related to the
sum over k′ and the previous argument for disassortative mixing holds. When
γ − 2 ≤ β < 1 there is a singularity coming from the sum over k′ of the type
αk

β−(γ−2)
c . However, since (8.10) comes from an identity, the singularity on the

l.h.s. must match both the exponent of kc and the prefactor on the r.h.s. In the
case γ−2 ≤ β < 1, the singularity coming from the sum is not strong enough to
match the r.h.s. of (8.10) since β−(γ−2) < 3−γ. Thus, the function k̄nn(k′, kc)
must also diverge when kc → ∞ in a non-zero measure set. Finally, when β > 1
the singularity associated to the sum is too strong, forcing the prefactor to scale
as α � rk1−β

c and the ANND as k̄nn(k′, kc) � rk1−β
c k′β . It is easy to realize

that r ≤ 1, since the ANND cannot be larger than kc. Plugging the k̄nn(k′, kc)
dependence into (8.10) and simplifying common factors, we obtain the identity
at the level of prefactors

r

2 − γ + β
=

1
3 − γ

. (8.11)

Since β > 1 and r < 1, the prefactor in the l.h.s. of (8.11) is smaller than the
one of the r.h.s. This fact implies that the tail of the distribution in the l.h.s.
of (8.10) cannot account for the whole divergence of its r.h.s. This means that
the sum is not the only source of divergences and, therefore, the ANND must
diverge at some other point.

In summary, the function k̄nn(k′, kc) must diverge when kc → ∞ in a non-zero
measure set independently of the correlation behavior. The large kc singularity
of the ANND can then be used to evaluate the quantity

〈
k̄nn

〉
N

=
∑

k

P (k)k̄nn(k, kc), (8.12)

where we have explicitly considered kc as a growing function of the network size
N . The r.h.s. of this equation is a sum of positive terms and diverges with kc at
least as k̄nn(k, kc) both in the disassortative or assortative cases. In other words,
all SF networks with 2 < γ ≤ 3 must present a

〈
k̄nn

〉
N

→ ∞ for N → ∞.
This statement is independent of the structure of the correlations present in
the network. The quantity

〈
k̄nn

〉
N

is particularly useful in model analysis and
real data measurements. Degree correlation functions can be measured in several
networks, but measurements are always performed in the presence of a finite kc
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that does not allow to exploit the singularity of the function k̄nn(k, kc). The most
convenient way to exploit the infinite size singularity is therefore to measure the〈
k̄nn

〉
N

for increasing network sizes.
The quantity

〈
k̄nn

〉
N

is very important in defining the properties of spreading
processes in networks since it measures the number of individuals that can be
infected in a few contagions. We shall discuss this point in relation to some
specific epidemic models in the next sections.

8.3 The SIS Model

As a first prototypical example for examining the properties of epidemic dyna-
mics in SF networks we consider the susceptible-infected-susceptible (SIS) model
[23], in which each vertex represents an individual of the population and the ed-
ges represent the physical interactions among which the infection propagates.
Each individual can be either in a susceptible or infected state. Susceptible in-
dividuals become infected with probability λ if at least one of the neighbors is
infected. Infected vertices, on the other hand, recover and become susceptible
again with probability one. A different recovery probability can be considered
by a proper rescaling of λ and the time. This model is conceived for representing
endemic infections which do not confer permanent immunity, allowing individu-
als to go through the stochastic cycle susceptible → infected → susceptible by
contracting the infection over and over again.

8.3.1 Uncorrelated Homogeneous Networks

In uncorrelated homogeneous networks, in which each vertex has more or less
the same number of connections, k � 〈k〉, a general result states the existence
of a finite epidemic threshold, separating an infected (endemic) phase, with a
finite average density of infected individuals, from a healthy phase, in which the
infection dies out exponentially fast [25]. This is for instance the case of random
networks with exponentially bounded degree distribution.

This result can be recovered by considering the dynamical evolution of the
average density of infected individuals ρ(t) (the prevalence) present in the net-
work. The SIS model in homogeneous uncorrelated networks at a mean-field level
is described by the following rate equation [11]

dρ(t)
dt

= −ρ(t) + λ 〈k〉 ρ(t) [1 − ρ(t)] . (8.13)

In this equation we have neglected higher order terms, since we are interested
in the onset of the endemic state, close to the point ρ(t) ∼ 0. Also, we have
neglected correlations among vertices. That is, the probability of infection of a
new vertex—the second term in (8.13)—is proportional to the infection rate λ, to
the probability that a vertex is healthy, 1−ρ(t), and to the probability that a edge
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in a healthy vertex points to an infected vertex. This last quantity, assuming the
homogeneous mixing hypothesis5, is approximated for homogeneous networks as
〈k〉 ρ(t), i.e. proportional to the average number of connections and to the density
of infected individuals. From (8.13) it can be proved the existence of an epidemic
threshold λc = 〈k〉−1 [25], such that ρ = 0 if λ < λc, while ρ ∼ (λ−λc) if λ ≥ λc.
In this context, it is easy to recognize that the SIS model is a generalization of
the contact process model, widely studied as the paradigmatic example of an
absorbing-state phase transition to a unique absorbing state [34].

8.3.2 Uncorrelated Complex Networks

For general complex networks, in which large degree fluctuations and correla-
tions might be allowed, we must relax the homogeneous hypothesis made in
writing (8.13) and work instead with the relative density ρk(t) of infected verti-
ces with given degree k; i.e. the probability that a vertex with k edges is infected.
Following [10, 11], the rate equation for ρk(t) can be written as

dρk(t)
dt

= −ρk(t) + λk [1 − ρk(t)]Θk(t). (8.14)

In this case, the creation term is proportional to the spreading rate λ, the density
of healthy sites 1 − ρk(t), the degree k, and the variable Θk(t), that stands for
the probability that an edge emanating from a vertex of degree k points to
an infected site. In the case of an uncorrelated random network, considered in
[10, 11], the probability that a edge points to a vertex with k connections is
equal to kP (k)/ 〈k〉 [17]. This yields a Θk = Θnc independent of k that reads as

Θnc =
1

〈k〉
∑

k′
k′P (k′)ρk′(t). (8.15)

Substituting the expression (8.15) into (8.14), it is possible to find the steady
state solution where Θnc is now a function of λ alone [10, 11] by the following
self-consistent equation:

Θnc =
1

〈k〉
∑

k

kP (k)
λkΘnc

1 + λkΘnc . (8.16)

A non-zero stationary prevalence (ρk = 0) is obtained when the r.h.s. and the
l.h.s. of (8.16), expressed as a function of Θnc, cross in the interval 0 < Θnc ≤ 1,
allowing a nontrivial solution. It is easy to realize that this corresponds to the
inequality

5 The homogeneous mixing hypothesis [23] states that the force of the infection (the
per capita rate of acquisition of the disease by the susceptible individuals) is pro-
portional to the density of infected individuals.
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d

dΘnc

(
1

〈k〉
∑

k

kP (k)
λkΘnc

1 + λkΘnc

)∣
∣
∣
∣
∣
Θnc=0

≥ 1 (8.17)

being satisfied. The value of λ yielding the equality in (8.17) defines the critical
epidemic threshold λc, that is given for uncorrelated random networks by

λnc
c =

〈k〉
〈k2〉 . (8.18)

In uncorrelated and infinite SF networks with γ ≤ 3, we therefore have
〈
k2
〉

=
∞, and correspondingly λnc

c = 0. This is a very relevant result, signalling that
the high heterogeneity of SF networks makes them extremely weak with respect
to infections. These results have several implications in human and computer
virus epidemiology [35].

8.3.3 Correlated Complex Networks

For a general network in which the degrees of the vertices are correlated, the
above formalism is not correct, since we are not considering the effect of the
degree k into the expression for Θk. This effect can be taken into account, howe-
ver, for Markovian networks, whose correlations are completely defined by the
conditional probability P (k′ | k). In this case, it is easy to realize that the correct
factor Θk can be written as

Θk(t) =
∑

k′
P (k′ | k)ρk′(t), (8.19)

that is, the probability that an edge in a vertex of degree k is pointing to an
infected vertex is proportional to the probability that any edge points to a vertex
with degree k′, times the probability that this vertex is infected, ρk′(t), averaged
over all the vertices connected to the original vertex. Equations (8.14) and (8.19)
define together the mean-field equation describing the SIS model on Markovian
complex networks,

dρk(t)
dt

= −ρk(t) + λk [1 − ρk(t)]
∑

k′
P (k′ | k)ρk′(t). (8.20)

It must be stressed that this equation is valid only if the network has no structure;
i.e. the only relevant variable is the degree k. This implies that all vertices within
a given degree class are statistically equivalent. This is not the case, for instance,
of regular lattices or structured networks [26, 27] in which a spatial ordering is
constraining the connectivity among vertices. The exact solution of (8.20) can
be difficult to find, depending on the particular form of P (k′ | k). However, it is
possible to extract the value of the epidemic threshold by analyzing the stability
of the steady-state solutions. Of course, the healthy state ρk = 0 is one solution.
For small ρk, we can linearize (8.20), getting



136 M Boguñá, R. Pastor-Satorras, and A. Vespignani

dρk(t)
dt

�
∑

k′
Lkk′ρk′(t). (8.21)

In the previous equation we have defined the Jacobian matrix L = {Lkk′} by

Lkk′ = −δkk′ + λkP (k′ | k), (8.22)

where δkk′ is the Kronecker delta symbol. The solution ρk = 0 will be unstable
if there exists at least one positive eigenvalue of the Jacobian matrix L. Let
us consider the connectivity matrix C, defined by Ckk′ = kP (k′ | k). Using the
symmetry condition (8.3), it is easy to check that if vk is an eigenvector of C, with
eigenvalue Λ, then P (k)vk is an eigenvector of the transposed matrix CT with
the same eigenvalue. From here it follows immediately that all the eigenvalues
of C are real. Let Λm be the largest eigenvalue of C. Then, the origin will be
unstable whenever −1 + λΛm > 0, which defines the epidemic threshold

λc =
1
Λm

, (8.23)

above which the solution ρk = 0 is unstable, and another non-zero solution takes
over as the actual steady-state—the endemic state.

It is instructive to see how this general formalism recovers previous results
[10, 11], implicitly obtained for random uncorrelated networks. For any random
network, in which there are no correlations among the degrees of the vertices, we
have that the connectivity matrix is given by Cnc

kk′ = kP (k′/k) ≡ kk′P (k′)/ 〈k〉,
since the probability that an edge points to a vertex of connectivity k′ is pro-
portional to k′P (k′). It is easy to check that the matrix {Cnc

k′k} has a unique
eigenvalue Λnc

m =
〈
k2
〉
/ 〈k〉, corresponding to the eigenvector vnc

k = k, from
where we recover the now established result (8.18).

8.3.4 Correlated Scale-Free Networks

The absence of an epidemic threshold in SF uncorrelated networks is an extre-
mely important question that prompts to a possible weakness of many real-world
networks. Particularly important is for the case of digital viruses spreading on
the Internet [10, 4] and sexually transmitted diseases diffusing on the web of se-
xual contacts [36]. Both these networks show, in fact, SF properties that would
imply the possibility of major epidemic outbreaks even for infections with a very
low transmission rate. Immunization policies as well must be radically changed
in the case that a network has a null epidemic threshold [37, 38, 39].

In view of the relevance of this framework, it is extremely important to study
to which extent the presence of correlations are altering these results. The main
question is therefore which conditions on the degree correlations of SF networks
preserve the lack of a critical threshold. In the case of correlated networks, we
have shown that the epidemic threshold is the inverse of the largest eigenva-
lue of the connectivity matrix C. The absence of an epidemic threshold thus
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corresponds to a divergence of the largest eigenvalue of the connectivity matrix
C in the limit of an infinite network size N → ∞. In order to provide some
general statement on the conditions for such a divergence we can make use of
the Frobenius theorem for non-negative irreducible matrices [40]. This theorem
states the existence of the largest eigenvalue of any non-negative irreducible ma-
trix, eigenvalue which is simple, real, positive, and has a positive eigenvector. In
our case the matrix of interest is the connectivity matrix that is non-negative
and irreducible. The irreducible property of the connectivity matrix is a simple
consequence of the fact that all the degree classes in the network are accessible.
That is, starting from the degree class k it is always possible to find a path of
edges that connects this class to any other class k′ of the network. If this is
not the case it means that the network is built up of disconnected irreducible
subnetworks and, therefore, we can apply the same line of reasoning to each
subnetwork6. From the Frobenius theorem [40] it can be proved that the maxi-
mum eigenvalue, Λm, of any non-negative irreducible matrix, Akk′ , satisfies the
inequality

Λm ≥ min
k

1
ψ(k)

∑

k′
Akk′ψ(k′), (8.24)

where {ψ(k)} is any positive vector. In particular, by setting A = C2 and
ψ(k) = k we obtain the inequality

Λ2
m ≥ min

k

∑

k′

∑

�

k′�P (� | k)P (k′ | �). (8.25)

This inequality relates the lower bound of the largest eigenvalue Λm to the degree
correlation function and allows to find a sufficient condition for the absence of
the epidemic threshold. By noting that

∑
k′ k′P (k′ | �) = k̄nn(�, kc), we obtain

the inequality

Λ2
m ≥ min

k

∑

�

�P (� | k)k̄nn(�, kc). (8.26)

The r.h.s. of this equation is a sum of positive terms, and by recalling the di-
vergence of the ANND with kc, we readily obtain that Λm ≥ ∞ for all networks
with diverging

〈
k2
〉

both in the disassortative or assortative cases7. The diver-
gence of Λm implies on its turn that the SIS epidemic threshold vanishes, in
the thermodynamic limit, in all SF networks with assortative or disassortative
mixing if the degree distribution has a diverging second moment; i.e. a SF degree
6 Notice that being irreducible is not equivalent to being fully connected at the vertex

to vertex level, but at the class to class level.
7 One may argue that, since we are calculating a minimum for k, if the transition

probability P (� | k0) is zero at some point k0, this minimum is zero. In this case it is
possible to show that repeating the same argument with C3 instead of C2 provides
us an inequality that avoids this problem, [21].
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distribution with exponent 2 < γ ≤ 3 is a sufficient condition for the absence of
an epidemic threshold for the SIS model in unstructured networks with arbitrary
two-point degree correlation function.

In physical terms, the absence of the epidemic threshold is related to
the divergence of

〈
k̄nn

〉
N

in SF networks. In homogeneous networks, where
〈
k̄nn

〉
N

� 〈k〉, the epidemic spreading properties can be related to the average
degree. In SF networks, however, the focus shifts to the possibility of infecting
a large number of individuals in a finite number of contagions. The fact that
an infected vertex has a very low degree is not very important if a hub of the
network that provides connectivity to a large number of vertices is a few hops
away. The infection can, in this case, very easily access a very large number of
individuals in a short time. In SF networks is the ANND that takes into ac-
count more properly the level of degree fluctuations and thus rules the epidemic
spreading dynamics.

It is worth stressing that the divergence of
〈
k̄nn

〉
N

is ensured by the degree
detailed balance condition alone, and it is a very general result holding for all
SF networks with 2 < γ ≤ 3. On the contrary, the SF behavior with 2 < γ ≤ 3
is a sufficient condition for the lack of epidemic threshold only in networks with
general two-point degree correlations and in absence of higher-order correlati-
ons. The reason is that the relation between the epidemic threshold and the
maximum eigenvalue of the connectivity matrix only holds for these classes of
networks. Higher order correlations, or the presence of an underlying metric in
the network [27], can modify the rate equation at the basis of the SIS model and
may invalidate the present discussion.

8.4 The SIR Model

The susceptible-infected-removed model (SIR) [23] represents the other para-
digmatic example of epidemic dynamics. Unlike in the SIS model, in this case
infected individuals fall, after some random time, into a removed state where
they cannot neither become infected again nor infect other individuals. This
model tries to mimic real epidemics where individuals, after being infected, ac-
quire permanent immunity or, in the worst case, die.

The SIR model is defined as follows. Individuals can only exist in three
different states, namely, susceptible, infected, or removed. Susceptible individuals
become infected with probability λ if at least one of their neighbors is infected.
On the other hand, infected individuals spontaneously fall in the removed state
with probability µ, which without lack of generality we set equal to unity. The
main difference between both models is that whereas in the SIS, for λ > λc,
the epidemics reaches a steady state, in the SIR the epidemics always dies and
reaches eventually a state with zero density of infected individuals. The epidemic
prevalence is thus defined in this case as the total number of infected individuals
in the whole epidemic process.
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8.4.1 Uncorrelated Homogeneous Networks

In a homogeneous system, the SIR model can be described in terms of the
densities of susceptible, infected, and removed individuals, S(t), ρ(t), and R(t),
respectively, as a function of time. These three quantities are linked through the
normalization condition

S(t) + ρ(t) +R(t) = 1, (8.27)

and they obey the following system of differential equations:

dS

dt
= −λ 〈k〉 ρS,

dρ

dt
= −ρ+ λ 〈k〉 ρS, (8.28)

dR

dt
= ρ.

These equations can be interpreted as follows: infected individuals decay into the
removed class at a unity rate, while susceptible individuals become infected at
a rate proportional to both the densities of infected and susceptible individuals.
Here, λ is the microscopic spreading (infection) rate, and 〈k〉 is the number of
contacts per unit time that is supposed to be constant for the whole population.
In writing this last term of the equations we have assumed again, as in the case
of the SIS model, the homogeneous mixing hypothesis [23],

The most significant prediction of this model is the presence of a nonzero
epidemic threshold λc [24]. If the value of λ is above λc, λ > λc, the disease
spreads and infects a finite fraction of the population. On the other hand, when
λ is below the threshold, λ < λc, the total number of infected individuals (the
epidemic prevalence), R∞ = limt→∞R(t), is infinitesimally small in the limit
of very large populations. In order to see this point, let us consider the set
of equations (8.28). Integrating the equation for S(t) with the initial conditions
R(0) = 0 and S(0) � 1 (i.e., assuming ρ(0) � 0, a very small initial concentration
of infected individuals), we obtain

S(t) = e−λ〈k〉R(t). (8.29)

Combining this result with the normalization condition (8.27), we observe that
the total number of infected individuals R∞ fulfills the following self-consistent
equation:

R∞ = 1 − e−λ〈k〉R∞ . (8.30)

While R∞ = 0 is always a solution of this equation, in order to have a nonzero
solution the following condition must be fulfilled:

d

dR∞

(
1 − e−λ〈k〉R∞

)∣
∣
∣
R∞=0

≥ 1. (8.31)
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This condition is equivalent to the constraint λ ≥ λc, where the epidemic thres-
hold λc takes the value λc = 〈k〉−1. Performing a Taylor expansion at λ = λc
it is then possible to obtain the epidemic prevalence behavior R∞ ∼ (λ − λc)
(valid above the epidemic threshold). From the point of view of the physics of
non-equilibrium phase transition, it is easy to recognize that the SIR model is
a generalization of the dynamical percolation model, that has been extensively
studied in the context of absorbing-state phase transitions [34].

8.4.2 Uncorrelated Complex Networks

In order to take into account the heterogeneity induced by the presence of vertices
with different degree, we consider the time evolution of the magnitudes ρk(t),
Sk(t), and Rk(t), which are the density of infected, susceptible, and removed
vertices of degree k at time t, respectively [14, 15]. These variables are connected
by means of the normalization condition

ρk(t) + Sk(t) +Rk(t) = 1. (8.32)

Global quantities such as the epidemic prevalence can be expressed as an aver-
age over the various degree classes; for example, we define the total number of
removed individuals at time t by R(t) =

∑
k P (k)Rk(t), and the prevalence as

R∞ = limt→∞R(t). At the mean-field level, for random uncorrelated networks,
these densities satisfy the following set of coupled differential equations:

dρk(t)
dt

= −ρk(t) + λkSk(t)Θnc(t), (8.33)

dSk(t)
dt

= −λkSk(t)Θnc(t), (8.34)

dRk(t)
dt

= ρk(t). (8.35)

The factor Θnc(t) represents the probability that any given edge points to an
infected vertex and is capable of transmitting the disease. This quantity can
be computed in a self-consistent way: The probability that an edge points to
an infected vertex with degree k′ is proportional to k′P (k′). However, since the
infected vertex under consideration received the disease through a particular
edge that cannot be used for transmission anymore (since it points back to a
previously infected individual) the correct probability must consider one less
edge. Therefore,

Θnc(t) =
1

〈k〉
∑

k

(k − 1)P (k)ρk(t). (8.36)

The equations (8.33), (8.34), (8.35), and (8.36), combined with the initial con-
ditions Rk(0) = 0, ρk(0) = ρ0

k, and Sk(0) = 1 − ρ0
k, completely define the SIR

model on any uncorrelated complex network with degree distribution P (k). We
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will consider in particular the case of a homogeneous initial distribution of in-
fected individuals, ρ0

k = ρ0. In this case, in the limit ρ0 → 0, we can substitute
ρk(0) � 0 and Sk(0) � 1. Under this approximation, (8.34) and (8.35) can be
directly integrated, yielding

Sk(t) = e−λkφ(t), Rk(t) =
∫ ∞

0
ρk(τ)dt, (8.37)

where we have defined the auxiliary function

φ(t) =
∫ t

0
Θnc(τ)dτ =

1
〈k〉

∑

k

(k − 1)P (k)Rk(t). (8.38)

In order to get a closed relation for the total density of infected individuals, it
results more convenient to focus on the time evolution of the averaged magnitude
φ(t). To this purpose, let us compute its time derivative:

dφ(t)
dt

= 1 − 1
〈k〉 − φ(t) − 1

〈k〉
∑

k

(k − 1)P (k)e−λkφ(t), (8.39)

where we have introduced the time dependence of Sk(t) obtained in (8.37). Once
solved (8.39), we can obtain the total epidemic prevalence R∞ as a function of
φ∞ = limt→∞ φ(t). Since Rk(∞) = 1 − Sk(∞), we have

R∞ =
∑

k

P (k)
(
1 − e−λkφ∞

)
. (8.40)

For a general P (k) distribution, (8.39) cannot be generally solved in a closed
form. However, we can still get useful information on the infinite time limit; i.e.
at the end of the epidemics. Since we have that ρk(∞) = 0, and consequently
limt→∞ dφ(t)/dt = 0, we obtain from (8.39) the following self-consistent equation
for φ∞:

φ∞ = 1 − 1
〈k〉 − 1

〈k〉
∑

k

(k − 1)P (k)e−λkφ∞ . (8.41)

The value φ∞ = 0 is always a solution. In order to have a non-zero solution, the
condition

d

dφ∞

(

1 − 1
〈k〉 − 1

〈k〉
∑

k

(k − 1)P (k)e−λkφ∞

)∣
∣
∣
∣
∣
φ∞=0

≥ 1 (8.42)

must be fulfilled. This relation implies

λ

〈k〉
∑

k

k(k − 1)P (k) ≥ 1, (8.43)
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which defines the epidemic threshold

λnc
c =

〈k〉
〈k2〉 − 〈k〉 , (8.44)

below which the epidemic prevalence is null, and above which it attains a finite
value. It is interesting to notice that this is precisely the same value found for
the percolation threshold in generalized networks [8, 9]. This is hardly surprising
since, as it is well known [41], the SIR model can be mapped to a bond percolation
process.

8.4.3 Correlated Complex Networks

In order to work out the SIR model in Markovian networks it is easier to consider
the rate equations for the quantities N I

k (t) and NR
k (t), defined as the number

of infected and removed individuals of degree k, present at time t, respectively.
From this two quantities we can easily recover the densities ρk(t) and Rk(t) as

ρk(t) =
N I
k (t)
Nk

, Rk(t) =
NR
k (t)
Nk

, Sk(t) = 1 − ρk(t) −Rk(t), (8.45)

where Nk = NP (k) is the number of vertices with degree k. The rate equations
for N I

k (t) and NR
k (t) are then given by

dN I
k (t)
dt

= −N I
k (t) + λSk(t)Γk(t), (8.46)

dNR
k (t)
dt

= N I
k (t), (8.47)

where we have defined the function

Γk(t) ≡
∑

k′
N I
k′(t)(k′ − 1)P (k | k′) (8.48)

In this case, the creation of new infected individuals—the second term in the
r.h.s. of (8.46)—is proportional to the number of infected individuals of degree
k′, N I

k′(t), the probability that a vertex of degree k is susceptible, Sk(t), and
the average number of edges pointing from these infected vertices to vertices of
degree k, (k′ − 1)P (k | k′), all averaged for all the vertices of degree k′. This last
term takes into account that one of the edges is not available for transmitting
the infection, since it was used to infect the vertex considered. Dividing (8.46)
by Nk and making use of the detailed balance condition (8.3) we find the rate
equations for the relative densities as

dRk(t)(t)
dt

= ρk(t), (8.49)

dρk(t)
dt

= −ρk(t) + λkSk(t)Θk(t), (8.50)
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where, for a Markovian network, the factor Θk(t) takes the form

Θk(t) =
∑

k′
ρk′(t)

k′ − 1
k′ P (k′ | k) (8.51)

Again, it must be stressed that no structure is allowed in the network in order
for this equations to represent a valid formulation of the SIR model.

In order to extract information about the epidemic threshold, we proceed
similarly to the SIS model, performing a linear stability analysis. For time t → 0,
that corresponds to small ρk,Rk � 0 and Sk � 1, (8.50) and (8.51) can be written
as

dρk(t)
dt

�
∑

k′
L̃kk′ρk′(t), (8.52)

where the Jacobian matrix L̃ = {L̃kk′} can be written as

L̃kk′ = −δkk′ + λ
k(k′ − 1)

k′ P (k′ | k). (8.53)

In order to infect a finite fraction of individuals, we need the solution ρk = 0
to be unstable, which happens if there is at least one positive eigenvalue of the
Jacobian matrix L̃. Defining the matrix C̃ = {C̃kk′}, with elements

C̃kk′ =
k(k′ − 1)

k′ P (k′ | k), (8.54)

we know from the Frobenius theorem, since it is positive and provided that it
is reducible at the degree class level, that it has a largest eigenvalue Λ̃m that
is real and positive. Thus, the solution ρk = 0 of (8.52) is stable whenever
−1 + λΛ̃m < 0. This relation defines the epidemic threshold for the SIR model
in Markovian networks

λ =
1
Λ̃m

. (8.55)

In the case of a random uncorrelated network, we have that C̃nc
kk′ = k(k′ −

1)P (k′)/ 〈k〉. It can be easily seen that this matrix has a unique eigenvalue
Λ̃nc
m =

〈
k2
〉
/ 〈k〉 − 1, corresponding to the eigenvalue ṽnc

k = k, thus recovering
the previous result (8.44) obtained for this kind of networks.

The relation between the SIR model and percolation in correlated complex
networks can be closed by noticing that the relevant parameter in this last pro-
blem is the largest eigenvalue of the matrix Cperc = {Cperc

kk′ }, with elements
Cperc
kk′ = (k′ − 1)P (k′ | k), as pointed out in [42]. It is easy to check that if vperc

k

is an eigenvector of Cperc with eigenvalue Λ, then ṽk = k vperc
k is an eigenvector

of C̃ with the same eigenvalue. Then, the eigenvalues of Cperc and C̃ coincide,
yielding in this way the same description and an identical critical point.
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8.4.4 Correlated Scale-Free Networks

The discussion of the absence of epidemic threshold of the SIS in SF networks
with any sort of degree correlations can be easily extended to the SIR model,
taking again advantage of the Frobenius theorem. In this case, in the general
inequality given by (8.24), we set A = C̃2 and ψ(k) = k, obtaining

Λ̃2
m ≥ min

k

∑

k′

∑

�

(�− 1)P (� | k)(k′ − 1)P (k′ | �). (8.56)

Given that
∑
k′(k′ − 1)P (k′ | �) = k̄nn(�, kc) − 1, the previous inequality reads

Λ̃2
m ≥ min

k

∑

�

(�− 1)P (� | k) [k̄nn(�, kc) − 1
]
. (8.57)

As in the case of the SIS model, the divergence of the ANND with kc in the
thermodynamic limit, ensures the divergence of the eigenvalue Λ̃m. Therefore,
a SF degree distribution with diverging second moment is a sufficient condition
for the absence of an epidemic threshold also for the SIR model if the minimum
degree of the network is kmin ≥ 2. The only instance in which we can have an
infinite k̄nn(�, kc) with a finite eigenvalue Λ̃m is when the divergence of k̄nn is
accumulated in the degree k = 1 and results canceled by the term �−1 in (8.57).
This situation happens when the SF behavior of the degree distribution is just
due to vertices with a single edge that form star-like structures by connecting on
a few central vertices. Explicit examples of this situation are provided in [27, 42].

8.5 Conclusions

In this paper we have reviewed the analytical treatment of the epidemic SIS
and SIR models in complex networks at different levels of approximation, cor-
responding to the different levels in which degree correlations can be taken into
account. At the zero-th level, in which all the vertices are assumed to have the
same degree (homogeneous networks), we observe the presence of an epidemic
threshold, separating an active or endemic phase from an inactive or healthy
phase, that is inversely proportional to the average degree 〈k〉. At this level of
approximation, both models render the same result, thus showing a high de-
gree of universality. At the first order approximation level, in which vertices are
allowed to have a different degree, drawn from a specified degree distribution
P (k), but are otherwise random, we obtain epidemic thresholds that are inver-
sely proportional to the degree fluctuations

〈
k2
〉
. The remarkable fact about this

result is that the epidemic threshold vanishes for SF networks with characteri-
stic exponent 2 < γ ≤ 3 in the limit of an infinitely large network. Finally, in
the second order approximation level, in which degree correlations are explicitly
controlled by the conditional probability P (k′ | k) that a vertex of degree k is
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connected to a vertex of degree k′, our analysis yields that the epidemic thres-
hold in the SIS and SIR models is inversely proportional to the largest eigenvalue
of the connectivity matrices Ckk′ = kP (k′ | k) and C̃kk′ = k(k′ − 1)P (k′ | k)/k′,
respectively. In the case of the SIR model we recover the mapping with perco-
lation at the level of correlations exclusively among nearest neighbor vertices.
The analysis of the divergence of the average nearest neighbors degree k̄nn(k, kc)
with the degree cut-off kc allows us to establish the general result that any SF
degree distribution with diverging second moment is a sufficient condition for
the vanishing of the epidemic threshold in the SIS model. The same sufficient
condition holds in the SIR model with kmin ≥ 2. The SIR model with kmin = 1
always shows the absence of an epidemic threshold with the exception of the
peculiar case in which the divergence of the average nearest neighbor degree is
accumulated only on the nodes of minimum degree. These results have extremely
important consequences, since they imply that correlations are not able to stop
an epidemic outbreak in SF networks, in opposition to previous claims, and in-
dicates that a reduction of epidemic incidence can only be obtained by means of
carefully crafted immunization strategies [37, 38, 39], or trivially through finite
size effects [43].
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00185 Roma, Italy

2 INFM and Dipartimento di Fisica, Università di Siena, Banchi di Sotto 55,
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Abstract. In addition to traditional properties such as the degree distribution P (k),
in this work we propose two other useful quantities that can help in characterizing
the topology of food webs quantitatively, namely the allometric scaling relations C(A)
and the branch size distribution P (A) which are defined on the spanning tree of the
webs. These quantities, whose use has proved relevant in characterizing other different
networks appearing in nature (such as river basins, Internet, and vascular systems), are
related (in the context of food webs) to the efficiency in the resource transfer and to
the stability against species removal. We present the analysis of the data for both real
food webs and numerical simulations of a growing network model. Our results allow us
to conclude that real food webs display a high degree of both efficiency and stability
due to the evolving character of their topology.

9.1 Introduction

Food webs [1, 2, 3] are an important example of complex networks [4] describing
the predation interactions among species in a given environment. A food web
can be defined as a directed graph [4, 5], which is a set of S vertices (each
labelled by an integer number i) representing biological species and L directed
links pointing from prey to predators. Conventionally, a set of species sharing
the same predators and the same prey is merged in one trophic species (this is
referred to as the aggregation of a food web, and is commonly performed in order
to reduce systematic biases [6, 7]).

The exploration of food web structure is one of the major issues of mo-
dern ecology [1, 2, 3]. Understanding how communities are assembled and evolve
would give a deep insight into the organization of natural ecosystems. In particu-
lar, one of the main focuses of food web theory is understanding how (or whether)
topological properties of food webs change with the scale of the system (the num-
ber of species). A variety of ecological quantities are traditionally introduced in
order to describe and compare different food webs. Examples are given by the
fractions T,B, I of Top, Basal and Intermediate species, which are defined as the
species with respectively no predators, no prey, and both predators and prey.
These quantities also give the prey–predator ratio, defined as (B + I)/(I + T ).
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Another quantity of interest is the ratio of observed to possible links. If self
(cannibalistic) loops and reciprocal connections between two species are not in-
cluded, this ratio is expressed by the connectance c = 2L/(S2 − S) � 2L/S2.
Otherwise, the directed connectance [6] cd = L/S2 � c/2 is used. The scale
dependence of these quantities has been investigated [2, 6, 8, 9, 10], and none
of them shows a definite trend as the number of species varies. In particular,
the directed connectance varies from cd = 0.03 to cd = 0.3 in real webs [11],
deviating from the constant connectance [12] hypothesis which predicts cd to be
approximately constant about the value 0.1.

On the other hand, the recent exploration of network structures [4, 5] sho-
wed that several real-world networks, ranging from Internet and WWW to social
and biological systems, display unexpectedly similar properties. The quantities
which have been introduced to characterise network topology derive from graph
theory [5]. The number of incoming and outgoing links of a vertex is called the
in-degree kin and the out-degree kout of the vertex (their sum gives the total
degree k). In the ecological context, they have a direct interpretation in terms of
the number of prey and predators of a species respectively. The degree distribu-
tion P (k) gives the probability that a randomly chosen vertex has total degree
k. Also, one can introduce the average distance D (defined as the mean number
of links required to connect two randomly chosen vertices in the network), and
the clustering coefficient Cc (which is the probability of finding a link connecting
two neighbours of a randomly chosen vertex). While random graph models [13]
are characterised by a Poisson-like degree distibution and a small value of the
clustering coefficient, most real networks display a scale-free [5] degree distri-
bution of the form P (k) ∝ k−γ and a small-world [14] character. The latter is
defined as the simultaneous occurrence of a small average distance D and a high
value of the clustering coefficient Cc. The deviation from random graphs means
that real networks are rather complex structures shaped by non-random proces-
ses. This important aspect motivates the search for non-trivial models that can
reproduce the complex topology of real systems.

Recently, the investigation of such network properties has been extended to
food webs [7, 11, 15, 16, 17]. In this work, we report the results of the analysis
of four empirical networks [6, 8, 9, 10], three of which are the largest ones in the
ecological literature. As other authors [11, 15, 17] have independently observed,
we show that (differently from other networks) the aforementioned quantities
display an ambiguous behaviour in food webs. We suggest that these difficulties
can be overcome by analysing food webs in a different framework, namely that
of transportation networks [18, 19]. This rather natural choice provides us with
different quantities which are shown to display an interesting behaviour in all
the webs analysed. These quantities are computed on the spanning trees [13] of
real webs and capture some important functional properties related to the degree
of efficiency and stability of the networks. Moreover, we support our analysis
by means of numerical simulations of the Webworld Model [19, 20], and show
that these highly non-random properties can be reproduced by an evolutionary
mechanism of Darwinian selection.
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We finally discuss how these results shed new light on the theory of evolving
networks, since the growth process differs radically from the traditional ones [5].
In particular, it is the result of an intrinsic coupling between network topology
and the (population) dynamics defined on it.

9.2 Network Analysis

In this section we report the analysis of the data of four real food webs, na-
mely those of St. Martin Island [8], Ythan Estuary with parasites [10], Silwood
Park [9] and Little Rock Lake [6]. The latter three webs are the largest pu-
blished food webs in the ecological literature, containing respectively 134, 154
and 182 species. We followed the common convention [1] of adding, if absent, a
formal “environment vertex” representing the abiotic resources to the webs. Ac-
tually, the food web of Silwood Park documents all the interactions centred on
the Scotch Broom Cytisus scoparius, which represents the “environment vertex”
of the web. We report the analysis for both the unaggregated and aggregated
versions of the webs.

9.2.1 Ecological Properties

Most of the traditional ecological quantities such as cd, B, I, T , (B+ I)/(I+T )
are computed in the original papers [6, 8, 9, 10] and are reported in Table 9.1.
We also report the value lmax of the largest trophic level in the webs. The trophic
level l of a species is defined as the minimum number of directed links separating
it from the environment. It is a general result [1, 2] that the number of trophic
levels of real food webs is always small even when the number of species is large.
This is confirmed by looking at the values of lmax for the largest webs (see
Table 9.1).

Table 9.1. Ecological properties of unaggregated (U.) and aggregated (A.) webs

St.Martin Island Ythan Estuary Silwood Park Little Rock Lake

U. A. U. A. U. A. U. A.

S 44 42 134 123 154 82 182 93

L 224 211 597 576 365 215 2494 1046

cd 0.11 0.12 0.03 0.04 0.01 0.03 0.07 0.12

B 0.14 0.14 0.04 0.04 0.12 0.23 0.34 0.13

I 0.70 0.72 0.57 0.57 0.11 0.17 0.65 0.86

T 0.16 0.14 0.39 0.39 0.77 0.60 0.01 0.01
B+I
I+T

0.97 1.00 0.64 0.64 0.27 0.52 1.52 1.14

lmax 4 4 4 4 3 3 3 3
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9.2.2 Small-World Properties

As we already mentioned, the small-world effect (small value of the average
distance D and large value of the clustering coefficient Cc) has been detected
in a large number of different networks [5, 14]. Recent studies [11, 15, 16] have
extended such analysis to food webs.

The behaviour of D in both unaggregated [15] and aggregated [11, 16] versi-
ons of the webs has been investigated. The remarkable result is that, even in the
largest webs, the value of D is always less than or equal to 3 (this finding is ob-
viously related to, and more general than, the aforementioned result concerning
trophic levels). In Table 9.2 we report the value of D for the webs analysed.

Also the value of the clustering coefficient Cc of both unaggregated [15] and
aggregated [11] food webs has been studied. While in some webs [15] the value
of Cc is larger than that of a random graph with the same number of species S
and connectance c, in other webs [11] the opposite is true. For the webs in our
analysis (see Table 9.2), the value of Cc ranges from being 3.8 (Ythan Estuary)
to 1.1 (St.Martin Island) times larger than displayed by random graphs [11].

In general, the variations observed in the behaviour of Cc mean that, dif-
ferently from most real-world networks, food webs do not display small-world
properties [11].

9.2.3 Degree Distribution

The degree distribution P (k) displayed by food web has been studied by different
authors [11, 15, 17]. In a study focusing on unaggragated webs [15] it was found
that, while in some cases (such as Ythan Estuary and Silwood Park) the form
of P (k) can be fitted by a power-law, other webs (such as Little Rock Lake)
display an irregular degree distribution. We performed a similar analysis on the
aggregated webs and found the same behaviour as the unaggregated ones (see
Fig. 9.1): the form of P (k) is quite irregular for Little Rock Lake, while it can
be roughly fitted by a power-law distribution (P (k) ∝ k−γ) for Ythan Estuary
(γ = 1.08 ± 0.13) and Silwood Park (γ = 0.96 ± 0.13). Moreover, we found
an irregular form of P (k) for the St. Martin web too. Note that, however, the
power-laws are very noisy.

Very recently, more comprehensive studies [11, 17] focusing on the cumulative
degree distribution concluded that the form of P (k) in most aggregated webs is

Table 9.2. Small-world properties of unaggregated (U.) and aggregated (A.) webs

St.Martin Island Ythan Estuary Silwood Park Little Rock Lake

U. A. U. A. U. A. U. A.

D 1.93 1.92 2.41 2.40 3.34 3.06 2.15 1.89

Cc 0.32 0.31 0.22 0.23 0.14 0.23 0.38 0.54
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Fig. 9.1. Degree distribution P (k) for the four webs analysed

not scale-free, but rather single-scaled. Thus, real food webs do not in general
display neither small-world nor scale-free properties [11].

We anticipate here that the ambiguity in the form of P (k) reflects a rela-
ted difficulty in understanding food web organization. Scale-free networks can
be reproduced by a simple preferential attachment [5] mechanism capturing the
fundamental ingredient underlying their growth process: new vertices are conti-
nuously added and linked to preexisting ones with probability proportional to
their degree. Instead, as regards food webs, preferential attachment is unlikely
to be the correct growth hypothesis, for at least three reasons. First, it is not
clear why the degree of the species should completely drive the evolution of the
network [11, 17]. Second, the likelyhood of developing new reciprocal connec-
tions is determined by the features of the species, not simply by the number of
their current interactions. Finally, food web evolution is a rather complex result
of processes like speciation, extinction and rearrangement of interactions due to
modifications in species’ abilities [19, 20], an aspect which cannot be reduced to
simple growth rules focusing only on topological quantities.

9.3 Spanning Tree Analysis

We have shown that, when looking at the traditional network properties of food
webs, several difficulties arise. In the rest of the paper, we propose a different
framework where food webs can be studied and modelled, and we suggest an
analysis that allows to uncover unexpected regularities in real food webs. These
ideas also help in modelling food web evolution in a more realistic way.
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9.3.1 Foodwebs as Transportation Networks

The transfer of resources in a food web can be regarded as a transportation
process starting from the environment and reaching, directly or indirectly, every
species in the web. This is essentially due to the simple fact that every species has
to be delivered a certain amount of resources (prey) to survive. In other words,
the graph representing a food web is connected and such that each species can be
reached starting from the environment and following the direction of the links.

Moreover, note that links in a food web are not simply binary (present or
absent). Each link is indeed characterised by a “strenght” [1] which measures
the amount of resources which is transferred in the predation it represents. An
exact definition of link strenght which is also suitable for empirical observation
is limited by conceptual difficulties [21]. However, it is generally accepted [1, 2]
that the amount of resources transferred from a prey to a predator is small and
such that each trophic level l delivers a fraction λ � 0.1 of its resources to the
level l + 1.

The connectedness of food webs implies that they have at least one directed
spanning tree. A spanning tree of a directed graph with a “source” vertex (in
our case, the environment) is a connected subgraph with no loops such that
each vertex is reachable from the source. Moreover, the small value of the ecolo-
gical efficiency λ implies that, roughly speaking, each species receives the largest
amount of resources from the shortest sequence of links separating it from the
environment. This means that, among all possible spanning trees of a food web,
those representing the main transfer of resources are formed by the shortest
chains from the environment to the species. For each food web in our analysis,
we obtained a spanning tree with this features by firstly ordering the species in
trophic levels and then removing all links directed from a prey at level l to a
predator at level less than or equal to l. A few loops can still remain if more
than one prey at level l supplies resources to the s ame predator at level l+1. In
this case, we randomly select only one incoming link for each species to obtain
one spanning tree, and repeat this random procedure 1,000 times to have a set
of equivalent spanning trees. Note that the “root” of the tree is the environment
and the “leaves” are top species.

Once a spanning tree is obtained, one can analyse it in the context of trans-
portation networks and extend to food webs what is commonly performed for
other tree-like structures such as river basins [22] and vascular or respiratory
systems [23, 24]. In particular, one can analyse how branching properties scale
with system size (the number of vertices) according to the procedure described
below.

9.3.2 Allometric Scaling Relations

River basins and vascular systems can be represented by tree-like graphs with S
vertices labeled i = 1, S plus an additional vertex i = 0 (the outlet of the basin,
or the heart) which is the root of the tree. For each site i in the tree, compute
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[18] the number Ai of vertices belonging to γ(i) (defined as the set of vertices in
the branch starting at i plus i itself) and the sum Ci of the quantities Ai in the
same branch:

Ci =
∑

j∈γ(i)
Aj (9.1)

(note that γ(0) is the whole tree, and A0 equals the total number of vertices
plus the root S + 1). Plotting Ci versus Ai for each vertex i (including i =
0), allometric scaling relations of the form C(A) ∝ Aη are observed in both
river networks [18] (with η = 3/2, Ai being proportional to the drainage area
[22] uphill site i) and vascular systems [18, 24] (A0 and C0 are respectively
proportional to the metabolic rate B of an organism and to its body mass M ,
which are empirically related [25] by B ∝ M3/4, yielding η = 4/3). The exponent
η measures the efficiency [18, 24] of the transportation system in transferring
resources from the root to the sites (as in vascular systems) or from the sites to
the root (as in rivers), since Ci can be regarded as the “cost” of supporting the
transfer, through γ(i), of an amount of resources proportional to Ai. One can
show [18, 24] that the most efficient topology for a tree-like network embedded in
an Euclidean d-dimensional space corresponds to the optimal minimum exponent

ηeff =
d+ 1
d

(9.2)

(while the least efficient configuration, corresponding to a space-filling chain-
like topology, yields the maximum value η = 2). Hence, both vascular (d = 3)
and river (d = 2) networks are optimized, a result revealing their highly non-
random organization and thus being a signature of the (biological [23, 24] or
hydrogeological [22]) evolution that shaped their structure.

9.3.3 Efficiency of Empirical Food Webs

We computed the quantities C(A) on the spanning trees of both unaggrega-
ted and aggregated food webs. In Fig. 9.2 we show the result of such analysis
once an average over the set of 1,000 spanning trees of each web is performed.
Remarkably, all webs display a clear power-law behaviour of the form C(A) ∝ η.

The exponent η is always in the range 1.11−1.25, which reveals a high degree
of efficiency in the webs (the exponent is smaller than in rivers and organisms).
This is because food webs are not embedded in any Euclidean space, so that
there is no dimension d constraining the webs to display an exponent larger than
the optimal value ηeff previously discussed. The most efficient configuration
that can be realised without such constraints is the star-like topology where all
species are directly connected to the environment. Note that η → 1 as a generic
tree approaches a star-like configuration. At the opposite limit, as we already
mentioned, one has a chain-like configuration with η = 2. The finding that η is
much closer to 1 than to 2 is thus related to the small number of trophic levels
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Fig. 9.2. Allometric scaling relations C(A) for the four webs analysed

in the webs (in the star-like configuration there is only one trophic level, while
in the chain-like one there are S distinct levels).

We note that aggregated webs display a better form of C(A) than the unag-
gregated ones, and also that in the three largest webs the values of η are all
consistent with each other. We suggest that the larger value displayed by St.
Martin is due to the small size of the network (the points with small values
of A tend to increase the value of η with respect to the large-scale behaviour;
such points have a stronger effect in small webs). It would be interesting to in-
clude more webs in the analysis to test whether the large-scale behaviour of the
networks is universal [26].

The most striking result is that the power-law form of C(A) means that, like
rivers [22], the topology of any branch of the tree is statistically equivalent to
that of the whole tree. The finding of such self-similarity is remarkable in the
ecological context, since it might suggest that the overall organization of the
web is the result of local processes shaping the same form of the network at all
scales. It is thus important to ask what processes are suitable candidates for
the emergence of such pattern. We suggest that a possible answer is that every
species chooses a trade-off between maximizing resource input (by preying on
species at the lowest possible level) and minimizing the effort to compete against
the other predators which have the same aim. This results in a highly efficient,
although not optimal (η = 1) topology of the network. For these reasons, we
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expect that a suitable model including competition effects might reproduce the
observed form of the scaling relation C(A).

Moreover we remark that, since communities evolve (new species add and old
ones disappear), the number of species to support is not fixed a priori, but rather
the result of the best arrangement of a growing number of species among trophic
levels. Following the analogy with metabolism, it would be then very interesting
to relate the quantity C0 (which throughout this paper will be simply treated
as a topological quantity) to the total amount of resources needed to support
the whole system. With this observations, probably the correct way of regarding
the optimization of the food web is reversed: one should not ask whether C0
(viewed as a “cost”) is minimized once A0 = S + 1 is fixed, but rather whether
A0 (the diversity of the community) is maximized once C0 (viewed as a measure
of the environmental supply) is fixed. These issues are of fundamental interest
in biogeography [27].

9.3.4 Stability under Species Removal

Until now, we did not discuss the role of the links that are eliminated to obtain
the spanning trees. While (according to our discussion) they have no relevance in
determining network efficiency, we note that such links are likely to be essential
to the stability of the webs. To see this, we considered the statistical distribution
P (A) of the branch size A in one of the possible spanning trees of each food web
(see Fig. 9.3). In each case, the form of P (A) is higly skewed.

Now, note that if the web coincided with its spanning tree then P (A) would
measure the probability that the elimination of a randomly selected species re-
sults in the consequent removal of A species. The skewed behaviour of P (A)
means that there is a large number of species whose removal would result in the
elimination of few species, while the single removal of one of a small number of
other species would dramatically affect the stability of the web. In the whole
network, instead, the presence of additional links ensures a larger stability. To
test this property, we artificially removed one randomly selected species from
the original webs and repeated this test for each species in all webs, finding that
the maximum fraction f of species being eliminated after one random removal is
f � 0.05, with no regular dependence on the degree of the removed species. This
proves a very high stability of the food webs, which is not due to the presence
of the species with the largest degree. This is an a dditional argument related
to the form of the degree distribution of food webs: while in scale-free networks
the vertices with the largest degree are responsible for the connectedness of the
whole network [5], in food webs this is not the case. Rather, food web stability
relies on the large number of “redundant” links (those absent in the spanning
tree), as confirmed by observing (see Table 9.1) that in all webs L � S (while
in a tree L = S).

In some webs the form of P (A) can be roughly approximated by a power law
of the form P (A) ∝ A−τ (see Fig. 9.3). A power-law behaviour of such quantity
is widely observed in river networks [22], where P (A) is the drainage area distri-



9 Food Web Structure and the Evolution of Complex Networks 157

1 10 100

0.01

0.1

1

1 10 100 1 10 100 1 10 100

0.01

0.1

1
ST.MARTIN YTHAN SILWOOD LITTLE ROCK

τ =1.20 ± 0.24 τ =1.71 ± 0.32 τ =1.93 ± 0.21 τ =1.68 ± 0.12

A

P(
A

)

P(A)~A-τ

Unaggregated Unaggregated Unaggregated Unaggregated

AggregatedAggregated Aggregated Aggregated

τ =2.05 ± 0.08τ =1.51 ± 0.29τ =1.05 ± 0.43 τ =1.49 ± 0.22

Fig. 9.3. Branch size distribution P (A) for the four webs analysed

bution. Here, the agreement with the fitting curve is better for aggregated webs,
however the variations in the value of the exponent are such that we shall not
consider τ as a significant quantity in our following analyses of food web models.
For the same reason, we shall not consider the behaviour of P (k), and focus only
on the values of the connectance c (which allows comparison with the models)
and the scaling exponent η (which is the relevant newly introduced quantity).
Finally, we shall only consider aggregated webs.

9.4 The Webworld Model

Perhaps the most relevant models of food web structure are the Cascade model
[3] and the more recent Niche model [7]. Both models are static, since they gene-
rate webs with a fixed number of species and the desired value of the connectance
(externally tuned by a control parameter). The Niche model improves the pre-
dictions of the Cascade model and reproduces several food web properties [7].
However, static models are of limited relevance in understanding the structure
of real food webs, since they do not explicitly highlight any organising principle.
More specifically, due to the above considerations on the efficiency and stability
properties of real food webs, the processes shaping the observed patterns are
likely to be strongly related to the evolution [19] of the networks themselves.
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9.4.1 Coupling between Topology and Dynamics

To capture such aspect, we present the numerical results of the Webworld model
[19, 20], which simulates food web evolution under the long time processes of
speciation and extinction. Such evolving character of the model makes it signi-
ficantly more complex than static ones, however the basic idea is simple. Since
the modifications in the topology of the network are due to the introduction
of new species and the elimination of old ones, and since such processes cleary
depend on the population dynamics defined among species, the model explicitly
takes the dynamical aspect into account. This results in the definition of spe-
cies in terms of some features that determine the interaction coefficients of a
set of population equations governing the number of individuals of each species.
Variations in network composition allows species to explore the set of possible
features, so that the food web progressively evolves from a random to a complex
topology.

Before giving a more detailed description of the model and its predictions, we
note here that in such growth process the knowledge of the topology of the web
at a certain timestep is not sufficient in order to simulate (even stochastically)
the topology at the following timestep. The additional knowledge of dynamical
variables (the population and features of the species) is essential. This aspect is
absent in all models based on the preferential attachment hypothesis or variations
of it [5], where the topology of a network at a timestep is obtained by means of
stochastic rules once the topology at the previous timestep is known.

9.4.2 Initial State of the Model

All versions [19, 20] of the Webworld model define species in terms of a set of J
phenotypical features (picked from a pool of K possible ones) that can change
in time, and differ in the form of the population dynamics. The environment is
treated as an additional species i = 0 and assigned a set of J features that do
not change in time. The initial number of species S is an arbitrary choice, since
the long-term properties of the model do not depend on it [19, 20]. We will refer
to the early version of the Webworld model [19] since, as we will show, it displays
the minimal ingredients yielding the observed features.

Potential Predation Scores

The usefulness of possessing the feature α when predating a species possessing
the feature β is given by the element m of a K × K anti-symmetrical random
matrix whose elements are picked uniformly in the interval [−1, 1] (in our si-
mulations, according to the original work [19], we always set K = 500 and
J = 10). A species i has a total predation “score” against species j given by
Sij = max{0,

∑
αβmαβ/J

2}, where α runs over the set of features of i and β
runs over the set of features of j, so that 0 ≤ Sij ≤ 1 (actually, in the original
paper [19] the elements mij are picked from a Gaussian distribution with zero
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mean and unit variance, and the sum
∑
αβmαβ is divided by J , not by J2, to

have a unit variance of Sij ; our modification is unessential and simplifies the
analytical predictions). A positive value of Sij means that i is potentially adap-
ted to be a predator of j, while j cannot be a predator of i (the environment
can only be predated, thus S0i = 0 for each i).

Competition

To be an effective predator of j, species i has to compete with the other predators
of j. More specifically, its score Sij has to be greater than the threshold value
SMj − δ, where SMj = maxi{Sij} is the score of the main predator of j and
0 ≤ δ ≤ 1 is a parameter of the model determining the strength of competition.
Equivalently, in order to draw a link from j to i in the food web, the “effective”
score

Fij = max{0, 1 − (SMj − Sij)/δ} (9.3)

has to be positive. A larger value of δ (weaker competition) means that more
species are effective predators, hence δ determines the connectance of the net-
work (note that cannibalistic and double loops are not allowed [19]): when δ = 1
(minimum competition) all potential predators are effective (a link exists bet-
ween any pair of species), while when δ = 0 only main predators are allowed
(the food web reduces to a chain), thus δ is analogous to the tuning parameter
of static models.

Initial Properties of the Model Food Webs

Before discussing the evolution of the model, we first analyse the initial state
of the webs. In the following, we will always compare the aggregated versions of
both real and model webs. However, since in the model features are randomly
assigned, the probability of finding two trophically equivalent species is vanishing
in the initial step.

As we mentioned, the initial connectance c0 strongly depends on the value
of the competition parameter δ. The general expression relating δ and c0 in the
initial state of the model can be obtained by noting that the total number of links
L must equal the sum of the number of predators (kout) of each species. For each
species j there are S−1 species i having scores Sij against it, of which on average
(S−1)/2 are zero, while the remaining (S−1)/2 are uniformly distributed in the
interval [0, 1]. The total number of predators of j is thus given by 1 (the main
predator) plus the fraction of the remaining (S − 1)/2 − 1 = (S − 3)/2 scores
falling within the segment of length δ, which is kout = 1+ δ(S− 3)/2. Hence the
connectance c0 is given by

c0 = 2L/S2 = (2/S2)
∑

kout = 2/S + δ(S − 3)/S � 2/S + δ (9.4)
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Table 9.3. Properties of the initial state of the Webworld model with 1,000 species

δ c0
d η0

0 0.001 2.00

0.01 0.005 1.83

0.02 0.01 1.51

0.1 0.05 1.33

0.2 0.1 1.22

0.6 0.3 1.18

1.0 0.5 1.05

Note that this expression reduces to the correct limiting values when δ = 0
(c0 � 2/S) and δ = 1 (c0 � 1). Equivalently, the directed connectance c0d � c0/2
has the initial value c0d � 1/S + δ/2. By looking at Table 9.3, we see that
this analytical prediction is confirmed by the numerical results. We note that
the values of the directed connectance of real webs (see also Table 9.1) are
reproduced by setting δ to a value between 0.02 and 0.2.

The value η0 of the scaling exponent for the webs generated in the initial step
of the model is also reported in Table 9.3. The values range from 2 to 1 as δ varies
from 0 to 1. This means that, as expected, the spanning trees of the webs range
from the chain-like to the star-like configuration as δ increases. However, to have
a value of η0 within the observed range (see Fig. 9.2) the competition parameter
has to be set to a value δ ≥ 0.2, corresponding to values of the connectance which
are too large (see Table 9.3). Therefore, the values of the connectance and of the
scaling exponent cannot be simultaneously reproduced with a single choice of δ,
and the initial state of the Webworld model is unsuitable for generating realistic
webs.

9.4.3 Evolution of the Model

The incompatibility of the values of the connectance and of the scaling exponent
in the initial state of the model can be regarded as follows. To have a spanning
tree close to a star-like topology (like those of real food webs), the number of links
in a randomly assigned web has to be large, so that there is a large probability
for any species to be connected to the environment vertex or to first level species.
In real webs, instead, even with a smaller number of links the topology is close
to optimality. This is likely to be the result of the evolution of real webs, which
were shaped by local processes increasing the global efficiency of the system, in
the same way that the optimized topology of river basins and vascular systems
is the result of a nontrivial evolutionary mechanism [18, 22, 23, 24].

To test these predictions, we now introduce the rules governing the evolution
of the Webworld model [19] and discuss their results.
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Population Dynamics

The scores Fij determine the coefficients γij of the population dynamics gover-
ning the number of individuals of each species i, which are assumed to display the
stationary values Ni given by the following simple set of linear donor-controlled
[28] equations:

Ni = λ
∑

j

γijNj (9.5)

where λ is the ecological efficiency, which is set to the value 0.1 consistently with
the empirical estimates [2], j runs over all species (including the environment,
which supplies a constant amount of resources R = λN0) and the coefficients

γij =
Fij∑
k Fkj

(9.6)

are the normalized “effective” scores (the coefficient γii is defined to be 0 or −1
if i has respectively no predators or at least one).

Speciation and Extinction

At each timestep t, all species with Ni < 1 (less than one individual) are removed
from the web (extinction event), while a new species is added (speciation event),
differing in only one randomly chosen feature from a pre-existing species (chosen
with probability proportional to its population Ni). Then the new stationary
population sizes are computed, and so on.

The newly introduced species may be unfit to compete against the preexisting
ones, and it can go extinct at the end of the following timestep. Otherwise, it
can successfully add to the web in a stable way, and even cause the extinction of
its competitors. After enough time, such evolutionary processes select successful
features and reject disadvantaegous ones, so that the list of features of each
species is no longer random. Consequently, the scores determining the topology
of the web form highly correlated patterns and the complexity of the network
increases significantly.

Asymptotic State of the Model

The result of a typical simulation of the model is reported in Fig. 9.4 (with R =
900 and δ = 0.04). We stress again that the model webs have to be aggregated
before computing the quantities of interest. The evolution of the network is
monitored recording, every 5, 000 timesteps, the number of species S(t), the
scaling exponent η(t) (computed by an internal procedure of the program fitting
the relation C(A) with a power law) and the connectance c.

All quantities display an approximately asymptotic behaviour after an initial
stage of evolution. During this initial stage, the number of species S(t) grows,
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Fig. 9.4. Evolution of a simulation of the Webworld model with R = 900 and δ = 0.04
(the abscissa is the time axis in units of the number of timesteps t). Upper panel:
evolution of the number of species S(t). Middle panel: evolution of the scaling exponent
η(t). Lower panel: evolution of the connectance parameter c(t)

punctuated by sudden decays (“coevolutionary avalanches”) since species are
not yet adapted to coexist in a stable way [19]. The fluctuations in the number
of species are thus large at the beginning and decrease as time proceeds. A
similar trend, namely the decrease in the rate of extinction (number of species
families eliminated per unit time) is documented in the Fossil Record [29], a
finding which has been interpreted [30] as a progressive increase in the degree of
adaptation of the species to coexist in the environment. The number of species
then saturates to an almost constant value, however species continue to speciate,
so that the composition of the web changes despite the diversity is approximately
constant. Once δ is fixed, the final number of species increases as R increases,
independently of the initial value of S.

Evolution of the Scaling Exponent

More interestingly (see Fig. 9.4), the exponent η decreases in time towards
an asymptotic value η∞ (1.13 in the figure) which is reached much before
(t � 100, 000) the number of species sets to its stable value (t � 200, 000),
so during a long time interval the web grows while η remains constant showing
its independence on system size. The decrease of η during the evolution has a
clear interpretation in terms of the efficiency of the food web. Starting from a
randomly assigned (hence inefficient) initial state, the topology of the web evol-
ves through successive “local” events (speciation and extinction) driven by the
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Table 9.4. Properties of the asymptotic state of the Webworld model with R = 1, 000

δ c∞
d η∞

0 0.01 2.00

0.01 0.08 1.61

0.02 0.10 1.20

0.1 0.12 1.11

0.2 0.18 1.09

0.6 0.37 1.07

1.0 0.50 1.04

coupling with the dynamics defined on it, thus becoming more and more globally
efficient over time.

Once R is fixed, the asymptotic value η∞ depends on δ (see Table 9.4) and,
as expected, it ranges from η∞ = 2 (δ = 0) to η∞ = 1 (η = 1). We checked that
the dependence on R is such that η∞ increases slightly even when R is increased
over orders of magnitude (yielding a final number of species S � 1, 000, falling
out of the testable range). Hence, as a rule of thumb, R determines the final
value of S (and has to range between 200 and 1, 000 to have from 50 to 150 final
species) and δ determines the scaling exponent η∞. The asymptotic values of η
correspond to the most efficient topology that the network can reach for a given
value of δ, this optimized state being significantly more efficient than the initial
(random) configuration.

Evolution of the Connectance Parameter

The connectance c of the web (see Fig. 9.4) increases during the first stage of the
evolution, reaching (for the choice of the parameters in the figure) the asymptotic
value c∞ = 0.23 (corresponding to c∞d = 0.12) which is almost six times larger
than its initial value c = δ = 0.04. In Table 9.4 we report the asymptotic values
c∞d corresponding to various choices of δ.

The increase in the connectance can be explained by noting that “least fit”
(low-score) species are removed while high-score species are replicated and mu-
tated, hence after enough time most scores will be found above the threshold
value imposed by δ increasing the network connectance. This means that the
species surviving to the continuous modification in the network topology (due
to the evolution of the web) are those selected to have many links.

Note that the evolution of the network is such that, differently from the
initial state, the asymptotic configuration fits both the connectance and the
scaling exponent of at least the webs of St. Martin and Little Rock Lake. This
occurs when δ is set to an appropriate value in the range 0.02 ≤ δ ≤ 0.1. In
particular, the choice of the parameters corresponding to the simulation shown
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Table 9.5. Comparison between the web of Little Rock Lake and the asymptotic state
of the Webworld model with R = 900 and δ = 0.04

Little Rock Lake Webworld Model

S 93 93

L 1046 1037

cd 0.12 0.12

B 0.13 0.15

I 0.86 0.84

T 0.01 0.01
B+I
I+T

1.14 1.16

lmax 3 3

D 1.89 1.89

Cc 0.54 0.55

η 1.15 1.13

τ 1.68 1.72

in Fig. 9.4 was aimed at reproducing the web of Little Rock Lake. A more detailed
comparison between the simulated and the real web is reported in Table 9.5 (the
match is excellent). This suggests that the model captures the key evolutionary
principles underlying the organization of real communities.

9.4.4 Further Comments on the Model

Despite the Webworld model looks quite complicated, once λ is fixed to its
phenomenological value the only relevant parameters are R (determining the
final number of species) and δ (tuning all other topological quantities such as η
and c), in the same way that simpler static models require the number of species
and another parameter (the connectance or an equivalent one) to determine the
same topological properties. The freedom in choosing the value of R corresponds
to the fact that different real food webs are supported by different environments,
each supplying a certain amount of resources. For the same reason, the number
of observed species varies significantly across real food webs.

As regards the parameter δ, instead, we comment that while in the model
it has to be externally tuned to a proper value to yield the desired value of the
exponent η, it is important to ask what natural mechanism may be responsible
for the selection of a particular value of η in real food webs. We propose two
explanations.

The first is a simple hypothesis of the existence of a negative feedback bet-
ween the amount of exploitable resources (in the model, R) and the strength of
competition (δ): when resources are abundant (or not completely exploited), the
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competition among species is negligible, and the number of species in the first
trophic level can grow. But when the amount of resources is decreased, the com-
petition among first-level species increases, so that new species find a “better”
ecological niche by feeding on species at first level, hence starting to occupy hig-
her levels. This feedback process might set both quantities to equilibrium values
corresponding to the observed exponent η.

The second is the hypothesis of a self-organized [31, 32] scenario in which the
predation threshold (δ in the model) spontaneously sets to a critical value with
no external fine tuning. While in the Webworld model the updating of predation
scores (through speciation and extinction) depends on the input value of δ, the
real processes changing the predation abilities of species may be self-organized
and result in an updating algorithm similar to that defined in the Bak–Sneppen
model [31] (species are arranged in a food chain and assigned a fitness value
uniform in the interval [0, 1]; if at each timestep a new fitness value is assigned to
the species with the minimum value and to its nearest neighbours, after enough
time all fitness values will be found above a threshold which spontaneously sets
to a particular value), yielding the observed value of η with no fine tuning of
any control parameter.

9.5 Discussion and Conclusion

We showed that real food webs display previously undetected properties that
are likely to be related to their evolution. The underlying growth process is such
that real webs show a high degree of both efficiency and stability. Such properties
suggest that food web modelling cannot ignore the evolutionary aspects leading
to a highly non-random network organization. This is confirmed by comparing
the features of the initial state of the Webworld model to its “asymptotic” beha-
viour. Indeed, Darwinian evolution increases the efficiency and the complexity
of the model food webs. While the (random) initial state of the model is not able
to reproduce real food webs, the (highly structured) asymptotic state succeeds
in doing so.

Food webs are not the only example of real-world networks displaying a com-
plex topology which is not reproduced by simple static models. As we mentioned,
one of the possible mechanisms leading to a scale-free degree distribution is the
preferential attachment hypothesis. However, we suggested that while a similar
hypothesis is justified in the case of social networks (where the evolution can
indeed be driven by network topology alone), in food webs this is not the case.
The additional introduction of a set of dynamical variables (the population sizes
of the species) seems necessary.

Since their coherent definition in terms of directed graphs, the study of food
webs has benefited from the advances in the field of complex networks, new
aspects of their structure having emerged by comparison with other different
systems. We think that the concepts discussed here may establish a feedback
on this knowledge process, since food webs represent a prototype example of
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evolving networks whose topology and dynamics are tightly coupled, an aspect
that has been so far ignored in the modelling of complex networks and, as we
showed, requires deeper insight into their structure. Since this additional degree
of complexity is widespread in real-world networks, the understanding of food
web evolution may be the starting point for a more general interdisciplinary
exploration of this intriguing subject.

References

1. J.H. Lawton: ‘Food Webs’. In: Ecological Concepts. ed. by J.M. Cherret (Blackwell
Scientific, Oxford 1989) pp. 43–48

2. S.L. Pimm: Food Webs (Chapman & Hall, London 1982)
3. J.E. Cohen, F. Briand, C.M. Newman: Community Food Webs: Data and Theory

(Springer, Berlin 1990)
4. S.H. Strogatz: Nature 410, 268 (2001)
5. R. Albert, A.-L. Barabási: Rev. Mod. Phys. 74, 47 (2002)
6. N.D. Martinez: Ecol. Monogr. 61, 367 (1991)
7. R.J. Williams, N.D. Martinez: Nature 404, 180 (2000)
8. L. Goldwasser, J. Roughgarden: Ecology 74, 1216 (1993)
9. J. Memmott, N.D. Martinez, J.E. Cohen: J. Anim. Ecol. 69, 1 (2000)

10. M. Huxham, S. Beaney, D. Raffaelli: Oikos 76, 284 (1996)
11. J.A. Dunne, R.J. Williams, N.D. Martinez: Santa Fe Institute Working Paper

02-03-10 (2002)
12. N.D. Martinez: Am. Nat. 139, 1208 (1992)
13. B. Bollobás: Random Graphs (Academic, London 1985)
14. D.J. Watts, S.H. Strogatz: Nature 393, 440 (1998)
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Abstract. Our scientific goal is to uncover common principles governing the behavior
of a range of social networks. Our practical goal is to use this understanding to deve-
lop specific strategies to destroy threat networks and, in parallel, to develop specific
strategies to defend threatened social networks against attack. There are recent hints
that progress toward achieving both goals can be achieved applying new approaches
from modern statistical physics to social network structure and dynamics.

10.1 Introduction

Populations, which can be viewed as networks of social acquaintances, are vul-
nerable to disease epidemics such as AIDS. Any random immunization of peo-
ple against such disease attacks is problematic because it must encompass al-
most the entire population in order to successfully stop the spreading epidemic
[1, 2, 3, 4, 5]. Other types of social networks are organizations, e.g., security
agencies, in which working relations are represented by links. To be effective,
these organizations must be stable and allow rapid data flow in the network.
We have begun addressing these problems – using concepts and tools of both
social sciences and statistical and nonlinear physics – by designing more stable
social network structures, enabling them to resist both random and intentional
attacks. For this purpose, we need to better understand the topological structu-
res of existing social networks, and to improve our understanding of transport
in such systems.

Our methods in statistical physics are based on relatively new concepts, such
as correlated site-bond percolation theory [6, 7, 8, 9, 10]. The applications of per-
colation theory range from predicting the amount of oil that can be extracted
from an underground reservoir, to understanding the network formation mecha-
nism involved in the hardening of a boiled egg. The use of percolation theory has
already proven valuable in the study of social networks. The Bar-Ilan group has
generalized percolation theory in order to analyze the structure and stability of
general networks under random failures [11] and intentional attacks [12]. Based
on this generalization, we are following up on a novel approach for designing
new social networks that are more resilient to attack. We are also developing
methods based on the percolation approach [13] that will enable us to immunize
populations more effectively against different types of epidemics.
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10.2 Recent Advances on Scale-Free Social Networks

Very recent analysis of social networks, as well as many other networks (such as
trust networks and sexual networks), reveals that some of these networks display
the important property of being scale-free [6, 2, 14], i.e., there is a very wide
distribution of the number of links per vertex. Most vertices have a small number
of connections. However, there are a small number of vertices that have a very
large number of connections, and there are vertices in the full range between
these extremes. Further, it seems that there is a possible explanation for this
scale-free behavior [2, 15], and that the results for sexual networks extend to
other social networks [16].

Our groups are studying the structure of a wide range of social network types
[17], and are building mathematical models and tools for large social networks
[13]. In studies conducted about the stability of scale-free social networks, it
was proven that these networks are optimally resilient to the random failure of
individuals [11]. Even if almost all elements of a network malfunction, a large
fraction of the individuals will be left connected, allowing continuing interac-
tions between a large fraction of the population. This situation is unlike that of
homogeneous networks, in which such a failure will break the entire network into
small, unconnected islands. On the other hand, a deliberate, successful attack
on the most-connected elements in the network will lead to failure of the entire
network after only a small fraction of nodes have been targeted [12]. Further,
studies show that search can be conducted in such heterogeneous networks in a
much more efficient way than in homogeneous networks [18].

A connection exists between (a) the stability of a network and (b) the pro-
pagation of disease. Heterogeneous networks are prone to the rapid spread of
epidemics. If the individuals to be immunized are chosen randomly, spreading is
unavoidable, even if almost all individuals in the network are immunized. Ho-
wever, if the individuals to be immunized are chosen using “smart” strategies,
it becomes possible to reduce the number of infected individuals to almost zero.
Using models, it is possible to forecast the consequences of epidemic outbursts
and to try to control them. It is established that random immunization of a
large fraction of the population fails to prevent epidemics of diseases that spread
upon contact between infected individuals; for example, Malaria requires 99% of
the population to be immunized in order to stop epidemic spreading [4, 5]. On
the other hand, targeted immunization of the most-connected individuals requi-
res global knowledge of the topology of the social network in question, rendering
99% immunization impractical. We recently proposed an effective strategy, based
on the immunization of a small fraction of acquaintances of randomly-selected
individuals, that prevents epidemics without requiring global knowledge of the
social network [19].
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10.3 Recent Advances on Traffic Flow in Networks

We are adapting recent results on traffic flow to social network analysis. In 1994,
Leland et al. [20] found that Ethernet LAN traffic is self-similar; “bursts” occur
on every time scale. These findings show that long-range correlations in the
interval times of arriving packets and extreme variability (or infinite limit of the
variance). Paxson and Floyd [21] have found evidence for self-similarity of Wide
Area Network (WAN) Traffic, and showed the failure of Poisson modeling in this
case. New empirical findings challenge the validity of the traditional queuing
models, and new models have since been proposed. In contrast to the above
measurements, Takayasu et al. [22, 23, 24] have measured a 1/f power spectrum
only at the critical point of a phase transition, and it is still not clear whether the
flow is always self-similar in such networks. They found finite correlation times
in the fluctuations of network traffic, and identified phase transitions between
“sparse” and “jam” phases of the network.

The empirical phenomena mentioned above can influence the design of con-
trol schemes for traffic. However, the empirical description of the traffic is not
yet complete. As the Bar-Ilan group has demonstrated recently in the case of ve-
hicular traffic [25], a careful nonlinear statistical analysis of measured data may
lead to the finding of several congested phases. One of our goals is to clarify this
issue, and one method that we will use in the analysis of measured time series
is Detrended Fluctuation Analysis (DFA). DFA was developed by the Boston
group [26] and has been successfully applied by us and others to many systems,
e.g., to DNA sequences [27, 28], the analysis of climate changes [29, 30], heart
rate variability [31, 32, 33, 34], economics [35], and even prime numbers [36]. One
of the advantages of this method is its ability to detect long-range correlations
in the records in the presence of trends and other nonstationarities.

10.4 Characteristic Properies of Real Networks

10.4.1 Classification of Real Networks

We have developed a method that classifies complex real-world networks accor-
ding to their statistical topological properties [17]. By studying a wide range of
different types of networks, we find evidence for the occurrence of three classes
of small-world networks:

(a) scale-free networks,
(b) broad-scale networks, characterized by a connectivity distribution that has

a power-law regime followed by a sharp cut-off;
(c) single-scale networks, characterized by a connectivity distribution with a

fast-decaying tail.
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10.4.2 Percolation

A percolation approach for general networks has been developed, with surprising
results for scale-free networks [11, 12, 13]. The network is fully resilient to the
random failure of sites and is extremely vulnerable to intentional attack. This
analytical approach is being developed to study realistic social networks – e.g.,
where known correlations between individuals are included – where the measured
clustering property and real geographical distance, measured experimentally, are
being taken into account. Preliminary findings show that the geographical effect
has a strong influence on the stability and transport of the network [37, 38, 39].

10.4.3 Structural and Transport Properties of Networks

We are studying several topological properties of networks – e.g., clustering and
correlations. Some preliminary results already exist, such as the work on cluste-
ring in trust networks [40]. The clustering coefficient [41, 42], which quantifies
the extent to which nodes adjacent to a given node are linked, seems not to be
affected when the network collapses. This may be relevant to terrorist organiza-
tions that are comprised of small, strongly-connected cells that are connected to
each other by a few, highly-connected individuals [43]. The clustering was found
to be important also in electric power networks, e.g., the power grid in the We-
stern States in which the clustering coefficient is significantly larger than that
of random networks. A useful method to quantify correlations (by measuring
assortative tendencies, i.e., the tendency of high-degree vertices to associate pre-
ferentially with other high-degree vertices) was suggested recently by Newman
[44].

We have preliminary results extending these studies to other real social net-
works. We are also studying the degree distribution for sites at a given distance
from the most-connected site [45]. We are also studying the effect of geographi-
cal distance in real networks. This information is important for evaluating the
stability and the immunization threshold. We are also analyzing the transport
properties of data flow in social networks. We are applying DFA analysis and
multifractal analysis [46] to better understand transport in complex social net-
works. We also are developing structural and transport modeling that will enable
a better understanding of the structure and transport in such networks.

10.4.4 Optimizing the Stability of Threatened Networks

We are using the analytical approach we developed to calculate the percolation
threshold for a given network [11, 12], in order to design topologies that improve
the stability of scale-free networks under both random failures and intentional
attacks. This is being done by calculating the percolation threshold while keeping
the average number of links for an individual in the network constant (for safety
and security reasons) and then varying parameters such as the form of the degree
distribution, the type of correlations, and the clustering coefficients. We are also
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testing the effect of geographical distances on the stability of scale free networks.
This will enable us to propose ways to design more stable networks and to
improve the stability of existing networks.

10.4.5 Immunization of Networks

Random immunization fails to prevent epidemics of diseases that spread in po-
pulations upon contact between infected individuals [4, 5]; the same is true for
immunization of computers against viruses [47]. Unless almost the entire system
is immunized, the virus continues to spread through the population or computer
network. To deal with this problem, the Bar-Ilan group has developed an analy-
tical method that can accurately determine, for various scenarios, the threshold
needed to stop spreading epidemics [13]. Among these possible scenarios are
(i) immunizing people who are acquaintances of an infected individual and (ii)
immunizing only those people who are acquaintances of at least two infected
individuals.

Our recent results on social networks are complemented by analogous strate-
gies for protecting other threatened networks, such as communication networks.
For example, the Bar-Ilan group has already demonstrated that, in scale-free
uncorrelated networks, if we immunize the neighbors of randomly-chosen sites,
the critical threshold can be reduced by a factor of five [19]. This result has
dramatic practical implications.

Our analytical approach is enabling us to study efficient immunization stra-
tegies in more realistic networks where, e.g., correlations, clustering effects, and
geographical topology are taken into account. The immunization approach is
also helping to develop methods to disintegrate targeted organizations, since by
removing the nodes that are most relevant for immunity, the targeted network
will collapse.

10.5 Possible Contributions of Social Network Research

(a) We are improving the tentative explanation [15] of scale-free social networks,
and develop a better understanding of the range of social networks that are
scale-free [16].

(b) We are developing a better understanding of the topological structures and
the tomography of threatened social networks.

(c) We are developing new algorithms to improve the stability and safety of
threatened networks. We are designing networks for optimal resistance to
epidemics, malfunctions and attacks, and we are designing efficient and se-
cure algorithms for organizational data flow.

(d) We are designing efficient methods for effective “immunization” that will
greatly reduce spreading in threatened networks – the same mathematics
describes spread of infectious agents in social networks, or “viruses” in com-
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munication networks. These methods will also help to identify weaknesses
and thereby protect threatened networks.

10.6 Discussion

We are seeking to test whether concepts and methods of statistical physics such
as scaling and percolation theory can be usefully applied to social networks,
with special emphasis on social networks such as sexual networks and threatened
networks. Many of the primary methods being used in our network research have
been developed by our research group. These include the analytical percolation
approach to general networks [11, 12, 13], the efficient immunization theory
[19, 13], and the DFA method [26]. We also were among the first to identify
scale-free networks in certain social systems and sexual networks [14, 15, 16],
and we developed an approach for classifying network topologies [17].
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Abstract. A model of communication that is able to cope simultaneously with the
problems of search and congestion is presented. We investigate the communication
dynamics in model networks. Those networks consist in a regular lattice ordering plus
some long-range short-cuts with a given probability. The destination nodes of the short-
cuts are chosen according to some degree of preferentiality. We study then the interplay
between short- and long-range links and preferentiality. We also introduce a general
framework that enables a search of optimal structures. A relation between dynamical
properties and topological properties of the network is found and exploited.

11.1 Introduction

In recent years, the study of static and dynamical properties of complex net-
works has received a lot of attention [1, 2, 3, 4, 5]. Complex networks appear
in such diverse disciplines as sociology, biology, chemistry, physics or computer
science. In particular, great effort has been exerted to understand the behavior
of technologically based communication networks such as the Internet [6], the
World Wide Web [7], or e-mail networks [8, 9, 10]. However, the study of commu-
nication processes in a wider sense is also of interest in other fields, remarkably
the design of organizations [11, 12]. For instance, it is estimated that more than
a half of the U.S. work force is dedicated to information processing, rather than
to make or sell things in the narrow sense [11].

The pioneering work of Watts and Strogatz [1] opened a completely new field
of research. Its main contribution was to show that many real-world networks
have properties of random graphs and properties of regular low dimensional lat-
tices. A model that could explain this observed behavior was missing and the
proposed ”small-world” model of the authors turned the interest of a large num-
ber of scientist in the statistical mechanics community in the direction of this
appealing subject. Nevertheless, this simplified model gives rise to a connec-
tivity distribution function with an exponential form, whereas many real world
networks show a highly skewed degree distribution, usually with a power law tail

P (k) ∝ k−γ (11.1)

with an exponent 2 ≤ γ ≤ 3. Barabasi and Albert [2] proposed a model where
nodes and links are added to the network in such a way that the probability of
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the added nodes to be linked to the old nodes depend on the number of existing
connections of the old node. This simple computational model can explain the
power law with an exponent γ = 3.

Tools taken from statistical mechanics have been used to understand not
only the topological properties of these communication networks, but also their
dynamical properties. The main focus has been in the problem of searchability,
although when the number of search problems that the network is trying to
solve increases it raises the problem of congestion at some central nodes. It has
been observed, both in real world networks [13] and in model communication
networks [14, 15, 16, 17, 18], that the networks collapse when the load is above a
certain threshold and the observed transition can be related to the appearance
of the 1/f spectrum of the fluctuations in Internet flow data [19, 20].

These two problems, search and congestion, that have so far been analyzed
separately in the literature can be incorporated in the same communication mo-
del. In previous works [16, 21, 18, 22] we have introduced a collection of models
that captures the essential features of communication processes and are able to
handle these two important issues simultaneously. In these models, agents are
nodes of a network and can interchange information packets along the network
links. Each agent has a certain capability that decreases as the number of packets
to deliver increases. The transition from a free phase to a congested phase has
been studied for different network architectures in [16, 18], whereas in [21] the
cost of maintaining communication channels was considered. Finally in [22] we
have attacked the problem of network optimization for fixed number of links and
nodes.

This paper is organized as follows. In Sect. 2 we present well known results
about search in complex networks, whereas in Sect. 3 we review recent work on
network load, being considered as a betweenness centrality and hence a static
characterization of the network. We present the common trends of our commu-
nication model in Sect. 4. In the next section, we show some of the exact results
that have been obtained for a particular class of network, Cayley trees. Finally,
in the last two sections we focus on the problem of network optimization, in
the first one through a parameterized set of networks, including connectivities
that can be short- or long-ranged, and different degrees of preferentiallity, and
in the second one we perform an exhaustive search of optimal networks for a
fixed number of nodes and links.

11.2 Search in Complex Networks

After the discovery of complex networks, one of the issues that has attracted
a lot of attention is “search”. Real complex communication networks such as
the Internet or the World Wide Web are continuously changing and it is not
possible to draw a map that allows to navigate in them. Rather, it is necessary
to develop algorithms that efficiently search for the desired computers or the
desired contents.
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Fig. 11.1. Network topology and search in Kleinberg’s scenario. Consider nodes A
and B. The distance between them is ∆AB = 6 although the shortest path is only 3. A
search process to get from A to B would proceed as follows. From A, we would jump
with equal probability to D or F , since ∆DB = ∆FB = 5: suppose we choose F . The
next jump would then be to G or C with equal probability since ∆CB = ∆GB = 4,
although from C it is possible to jump directly to B. This is a consequence of the local
knowledge of the network assumed by Kleinberg

The origin of the study of this problem is in sociology since the seminal
experiment of Travers and Milgram [23]. Surprisingly, it was found that the
average length of acquaintance chains was about six. This means not only that
short chains exist in social networks as reported, for example, in the “small
world” paper by Watts and Strogatz [1], but even more striking that these short
chains can be found using local strategies, that is without knowing exactly the
whole structure of the social network.

The first attempt to understand theoretically the problem of searchability
in complex networks was provided by Kleinberg [24]. In his work, Kleinberg
proposes a scenario where the network is modeled as a combination of a two-
dimensional regular lattice plus a number of long-range links. The distance ∆ij

between two nodes i and j is defined as the number of “lattice-steps” separating
them in the regular lattice, that is disregarding long-range links (see Fig. 11.1).
Long range links are not established at random. Instead, when a node i establis-
hes one of such links, it connects with higher probability with those nodes that
are closer in terms of the distance ∆. In particular, the probability that the link
is established with node j is

Πij ∝ (∆ij)
−r (11.2)

where r is a parameter.
The search algorithm proposed by Kleinberg is the following. A packet stan-

ding at one node will be sent to the neighbor of the node that is closer to the
destination in terms of the distance ∆. The algorithm is local because, as shown
in Fig. 11.1, the heuristics of minimizing ∆ does not warrant that the packet
will follow the shortest path between its current position and its destination.
Therefore, the underlying two-dimensional lattice has an imprecise global infor-
mational content.
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Kleinberg showed that with this essentially local scenario (with imprecise
global information), short paths cannot be found in general, unless the parameter
r is fixed to r = 2. This raised the question of why real networks are then
searchable, that is, how is it possible that in real networks local strategies are able
to find paths that scale as logN , where N is the size of the network. Recently,
Watts and coworkers have shown that with an idea similar to Kleinberg’s, one can
easily obtain searchable networks [25]. Their contribution consists in substituting
the underlying low-dimensional lattice by an ultra-metric space where individuals
are organized in a hierarchical fashion according to their preferences, similitudes,
etc. In this case, a broad collection of networks turn out to be searchable.

Parallel to these efforts, there have been some attempts to exploit the scale
free nature of some networks to design algorithms that, being local in nature,
are still quite efficient [26, 27]. The idea in all these works is to profit from the
scale-free nature of networks such as the Internet and bias the search towards
those nodes that have a high connectivity and therefore act as hubs.

11.3 Load and Congestion in Complex Networks

When the network has to tackle several simultaneous (or parallel) search
problems it raises the important issue of congestion at overburdened nodes
[13, 14, 15, 16, 17]. Indeed, for a single search problem the optimal network
is clearly a highly centralized star-like structure, with one or various nodes in
the center and all the rest connected to them. This structure is cheap to assem-
ble in terms of number of links and efficient in terms of searchability, since the
average cost (number of steps) to find a given node is always bounded (2 steps),
independently of the size of the system. However, the star-like structure will be-
come inefficient when many search processes coexist in parallel in the network,
due to the limitation of the central node to process all the information.

Load, independently of search, has been analyzed in different classes of net-
works [28, 29, 30, 31]. The load, as introduced in these works, is equivalent to the
betweenness as it has been defined in social networks [32, 28]. The betweenness
of a node j, βj , is defined as the number of minimum paths connecting pairs
of nodes in the network that go through node j. Among the topological pro-
perties of networks, betweenness has become one of their main characteristics.
In principle the time needed for the computation of the betweenness of all ver-
tices is of order O(MN2), where N is the number of nodes and M the number
of links of the network. However, Newman [28] introduced an algorithm that
reduces the magnitude of the time needed for the computation by a factor of
N . This definition was used to measure the social role played by scientists in
some collaboration networks [28]. Later on, it was also applied to quantify model
networks. Thus, in [29] different networks are constructed and their distribution
of betweennesses (or loads) measured. For instance, scale-free networks with an
exponent 2 < γ ≤ 3 lead to a load distribution which is also a power law,
P (�) ∼ �−δ with δ ≈ 2.2. On the other side, the load distribution of small-world
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networks shows a combined behavior of two Poisson-type decays. In subsequent
work, the authors in [31] suggested that real-world networks should be classified
in two different universality classes, according to the exponent of the power-law
distribution of loads. Finally, the distribution of loads was analytically computed
for scale-free trees in [30].

The works discussed in the previous paragraph consider the betweenness
as a topological property of the network, since it accounts for the number of
shorter-paths going through a node. However, to take into account the search
algorithm and the fact that packets can perform several random steps and then
go through the same node more than once we introduce an effective betweenness.
The effective betweenness of node j, Bj , represents the total number of packets
that would pass through j if one packet would be generated at each node at each
time step with destination to any other node. The effective betweenness coincides
with the topological betweenness when the nodes have complete information of
the network structure and packets always follow the shortest paths between
origin and destination.

11.4 A Model of Communication

The model that can handle search and congestion at the same time considers
that the information is formed by discrete packets that are sent from an origin
node to a destination node. Each node can store as many information packets
as needed. However, the capacity of nodes to deliver information cannot be
infinite. In other words, any realistic model of communication must consider that
delivering, for instance, two information packets takes more time than delivering
just one packet. A particular example of this would be to assume that nodes
are able to deliver one (or any constant number) information packet per time
step independently of their load, as happens in the communication model by
Radner [11] and in simple models of computer queues [14, 15, 17], but note that
many alternative situations are possible. In the present model, each node has a
certain capability that decreases as the load of accumulated packets increases.
This limitation in the capability of agents to deliver information can result in
congestion of the network. Indeed, when the amount of information is too large,
agents are not able to handle all the packets and some of them remain undelivered
for extremely long periods of time. The maximum amount of information that a
network can manage gives a measure of the quality of its organizational structure.
In the study of the model, the interest is focused in both when the congestion
occurs and how it occurs.

11.4.1 Description of the Model

The dynamics of the model is as follows. At each time step t, an information
packet is created at every node with probability ρ. Therefore ρ is the control
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parameter: small values of ρ correspond to low density of packets and high va-
lues of ρ correspond to high density of packets. When a new packet is created, a
destination node, different from the origin, is chosen randomly in the network.
Thus, during the following time steps t + 1, t + 2, . . . , t + T , the packet tra-
vels toward its destination. Once the packet reaches the destination node, it is
delivered and disappears from the network. Another interpretation is possible
for this information transfer scenario. Packets can be regarded as problems that
arise at a certain ratio anywhere in an organization. When one of such problems
arises, it must be solved by an arbitrary agent of the network. Thus, in subse-
quent time steps the problem flows toward its solution until it is actually solved.
This problem solving scenario can be considered a particularly illustrative case
of the more general information transfer scenario. The problem solving interpre-
tation suggest a model similar to Garicano’s [33] in that there is task diversity
and agents are specialized in solving only certain types of tasks.

The time that a packet remains in the network is related not only to the
distance between the source and the target nodes, but also to the amount of
packets in its path. Indeed, nodes with high loads—i.e. high quantities of accu-
mulated packets—will need long times to deliver the packets or, in other words,
it will take long times for packets to cross regions of the network that are highly
congested. In particular, at each time step, all the packets move from their cur-
rent position, i, to the next node in their path, j, with a probability qij . This
probability qij is called the quality of the channel between i and j, and is defined
as

qij =
√
kikj , (11.3)

where ki represents the capability of agent i and, in general, changes with time.
The quality of a channel is, thus, the geometric average of the capabilities of the
two nodes involved, so that when one of the agents has capability 0, the channel
is disabled. It is assumed that ki depends only on the number of packets at node
i, νi, through:

ki = f(νi) (11.4)

The function f(n) determines how the capability evolves when the number of
packets at a given node changes. In [18] we proposed a general form although in
this paper we will only show results for the case in which the number of delivered
packets is constant. This particular case is consistent with simple models of
computer queues [14], although the precise definition of the models may differ
from ours.

The election of the functional form for the quality of the channels and the
capability of the nodes is arbitrary. Regarding the first, (11.3) is plausible for
situations in which an effort is needed from both agents involved in the com-
munication process. If, on the contrary, information can be transmitted without
the collaboration of the receiver, an equation of the form

qij = ki , (11.5)
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Fig. 11.2. Evolution of the total number of packets, N , as a function of time for a
(5,7) Cayley tree and different values of ρ, below the critical congestion point (ρ =
1.1 · 10−4 < ρc), above the critical congestion point (ρ = 1.5 · 10−4 > ρc), and close to
the critical congestion point (ρ = 1.3 · 10−4 ≈ ρc). Note the logarithmic scale in the Y
axis

would be more adequate. Equation (11.5) will be used for analytical understan-
ding of the problem in Sect. 11.7, whereas (11.3) is used in Sect. 11.5. Some of
the most relevant features of the model, however, are not dependent on which
one is used.

11.4.2 Congestion and Network Capacity

Depending on the ratio of generation of packets ρ, two different behaviors are
observed. When the amount of packets is small, the network is able to deliver
all the packets that are generated and, after a transient, the total load N of
the network achieves a stationary state and fluctuates around a constant value.
These fluctuations are indeed quite small. Conversely, when ρ is large enough
the number of generated packets is larger than the number of packets that the
network can manage to solve and the network enters a state of congestion. The-
refore, N never reaches the stationary state but grows indefinitely in time. The
transition from the free regime, ρ small, to the congested regime, ρ large, occurs
for a well defined value of ρ, that will be denoted ρc. For values smaller than but
close to ρc, the steady state is reached but large fluctuations arise.

The three behaviors (free, congested and close to the transition) are depic-
ted in Fig. 11.2. For ρ < ρc, the width of the fluctuations is small, indicating
short characteristic times. This means, among other thinks, that the average
time required to deliver a packet to the destination is small. It also means that
correlation times are short, that is, the state of the network at one time step
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has little influence on the state of the network only a few time steps latter. As ρ
approaches ρc, the fluctuations are wider and one can conclude that correlations
become important. In other words, as one approaches ρc the time needed to deli-
ver a packet grows and the state of the network at one instant is determinant for
its state many time steps later. In the congested regime, the amount of delivered
packets is independent of the load and thus remains constant over time, while
the number of generated packets is also constant, but larger than the amount of
delivered packets. Thus, at each time step the number of accumulated packets
is increased by a constant amount, and N(t) grows linearly in time.

The transition from the free regime to the congested regime is therefore
captured by the slope of N(t) in the stationary state. When all the packets are
delivered and there is no accumulation, the average slope is 0 while it is larger
than 0 for ρ > ρc. We use this property to introduce an order parameter, η, that
is able to characterize the transition from one regime to the other:

η(p) = lim
t→∞

1
ρS

〈∆N〉
∆t

, (11.6)

In this equation ∆N = N(t +∆t) −N(t), 〈. . . 〉 indicates an average over time
windows of width ∆t and S is the number of nodes in the system. Essentially, the
order parameter represents the ratio between undelivered and generated packets
calculated at long enough times such that ∆N ∝ ∆t. Thus, η is only a function
of the probability of packet generation per node and time step, ρ. For ρ > ρc,
the system collapses, 〈∆N〉 grows linearly with ∆t and thus η is a function of ρ
only. For ρ < ρc, 〈∆N〉 = 0 and η = 0. Since the order parameter is continuous
at ρc, the transition to congestion is a critical phenomenon and ρc is a critical
point as usually defined in statistical mechanics [34].

Once the transition is characterized, the first issue that deserves attention
is the location of the transition point ρc as a function of the parameters of the
network. This transition point gives information about the capacity of a given
network. Indeed, the maximum number of packets that a network can handle
per time step will be Nc = Sρc. Therefore, ρc is a measure of the amount of
information an organization is able to handle and thus of the efficiency of a
given organizational structure. One reasonable problem to propose is, therefore,
which is the network that maximizes ρc for a fixed set of available resources
(agents and links).

11.5 Analytical Results for Hierarchical Lattices

As a first step we considered hierarchical networks, since they provide a zeroth
order approximation to real structures, and have also been used in the economics
literature to model organizations [11, 35]. In particular we are going to focus on
hierarchical Cayley trees, as depicted in Fig. 11.3. Cayley trees are identified
by their branching z and their number of levels m, and will be denoted (z,m)
hereafter.
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branch level 1 

level 2 
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level 4 

Fig. 11.3. Typical hierarchical tree structure used for simulations and calculations: in
particular, it is a tree (3, 4). Dashed line: definition of branch, as used in some of the
calculations

In this case the system is regarded as hierarchical also from a knowledge
point of view. It is assumed in the model that agents have complete knowledge
of the structure of the network in the subbranch they root. Therefore, when an
agent receives a packet, he or she can evaluate whether the destination is to be
found somewhere below. If so, the packet is sent in the right direction; otherwise,
the agent sends the packet to his or her supervisor. Using this simple routing
algorithm, the packets travel always following the shortest path between their
origin and their destination.

As happens in other problems in statistical physics [36], the particular sym-
metry of the hierarchical tree allows an analytical estimation of the critical point
ρc. In particular, the approach taken here is mean field in the sense that fluc-
tuations are disregarded and only average expected values are considered. By
using the steady state condition that the number of packets arriving at the top
node, which is the most congested one, equals the number of packets leaving it
we arrive to the following inequality

ρc ≥
√
z

z(zm−1−1)2
zm−1 + 1

(11.7)

when the quality of the channels is given by (11.3). Although this expression
provides an upper bound to ρc, (11.7) is an excellent approximation for z ≥ 3,
as shown in Fig. 11.4.

The total critical number of generated packets, Nc = ρcS, with S denoting
the size of the system, can be approximated, for large enough values of z and m
such that zm−1 � 1, by

Nc =
z3/2

z − 1
, (11.8)

which is independent of the number of levels in the tree. It suggests that the
behavior of the top node is only affected by the total number of packets arriving
from each node of the second level, which is consistent with the mean field
hypothesis.

According to (11.8), the total number of packets a network can deal with, Nc,
is a monotonically increasing function of z, suggesting that, given the number of
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agents in the organization, S, the optimal organizational structure, understood
as the structure with highest capacity to handle information, is the flattest one,
with m = 2 and z = S − 1.

To understand this result it is necessary to take into account the following
considerations:

– We are restricting our comparison only to different hierarchical networks and
in any hierarchical network, the top node will receive most of the packets.
Since origins and destinations are generated with uniform independent pro-
babilities, roughly (z − 1)/z of the packets will pass through the top node.

– Still, it could seem that having small z is slightly better according to the
previous consideration. However, it is important to note that, in the present
model (in particular due to (11.3)), the loads of both the sender and the
receiver are important to have a good communication quality. In a network
with small z, the nodes in the second level have also a high load, while in a
network with a high z the nodes in the second level are much less loaded.

– We have implicitly assumed that there is no cost for an agent to have a large
amount of communication channels active.

For the order parameter, it is possible to derive an analytical expression for
the simplest case where there are only two nodes that exchange packets. Since
from symmetry considerations ν1 = ν2, the average number of packets eliminated
in one time step is 2, while the number of generated packets is 2ρ. Thus ρc = 1
and with the present formulation of the model it is not possible to reach the
super-critical congested regime. However, ρ can be extended to be the average
number of generated packets per node at each step (instead of a probability)
and in this case it can actually be as large as needed. As a result, the order
parameter for the super-critical phase is η = (ρ− 1)/ρ. As observed in Fig. 11.4,
the general form

η(ρ/ρc) =
ρ/ρc − 1
ρ/ρc

(11.9)

fits very accurately the behavior of the order parameter for any Cayley tree.

11.6 Optimization in Model Networks

In this section we extend previous studies about local search in model networks
in two directions. First, we consider networks that, as in Kleinberg’s work, are
embedded in a two-dimensional space, but study the effect not only of long
range random links but also of long range preferential links. Secondly and more
significantly, we consider the effect of congestion when multiple searches are
carried out simultaneously. As we will show, this effect has drastic consequences
for optimal network design.
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Fig. 11.4. Comparison between analytical (lines) and numerical (symbols) values ob-
tained for hierarchical trees. Left: scaled critical probability (11.7). Right: order para-
meter (11.9)

11.6.1 Network Topology

The small world model [1] considered two main components: local linking with
neighbors and random long range links giving rise to short average distance
between nodes. The idea of Kleinberg is that local linking provides information
about the social structure and can be exploited to heuristically direct the se-
arch process. Later, Barabasi and Albert showed that growth and preferential
attachment play a fundamental role in the formation of many real networks [2].
Even though this model captures the correct mechanism for the emergence of
highly-connected nodes, it is not likely that it captures all mechanisms respon-
sible for the evolution of “real-world” scale-free networks. In particular, it seems
plausible that in many of the networks that show scale-free behavior there is also
an underlying structure as in the Watts and Strogatz model. To illustrate this
idea, consider web-pages in the World Wide Web. It is plausible to assume that
a page devoted to physics is more likely to be connected to another page devoted
to physics than to a page devoted to sociology. That is, a set of pages devoted to
physics is likely to be more inter-connected than a set including pages devoted
to physics and sociology.

Therefore we consider networks with four basic components: growth, pre-
ferential attachment, local attachment and random attachment. To create the
network the following algorithm is used:

1. Nodes are located in a two-dimensional square lattice without interconnec-
ting them.

2. A node i is chosen at random.
3. We create m links starting at the selected node. With probability φ, the

destination node is selected preferentially. With probability 1 − φ the desti-
nation node is one of the nearest neighbors of the selected node. When the
destination node is selected preferentially, we apply the following rule: the
probability that a given destination node j is chosen is a function of its
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Fig. 11.5. Construction of networks with multiple linking mechanisms. In both cases
φ = 0.25. A random node is selected at each time step and m = 4 new links starting
from that node are created. Black nodes represent nodes that have already been sel-
ected. Dotted lines represent the links created during the last time step in which node
C was selected. In a, the destination of long range links is created at random (γ = 0),
while in b they are created preferentially (γ > 0) and nodes A and B are attracting
most of them

connectivity

Πj ∝ kγj , (11.10)

where kj is the number of links of node j and γ is a parameter that allows
to tune the network from maximum preferentiallity to no preferentiallity.
Indeed, for γ = 0 the links are random and for γ = 1 we recover the BA
model, that generates scale free networks in the case φ = 1. For γ > 1, a few
nodes tend to accumulate all the links.

4. A new node is chosen and the process is repeated from step 3, until all the
nodes have been chosen once.

Figure 11.5 shows two examples of networks in the process of being created
according to this algorithm. Note that in this case, the number of links is fixed
and the existence of long range links implies that some local links are not present
and therefore that the information contained in the two-dimensional lattice is
less precise.

11.6.2 Communication Model and Search Algorithm

After the definition of the network creation algorithm, we move to the speci-
fication of the communication model and the search algorithm. For the com-
munication model, we will use the general model presented and discussed in
Sect. 11.4. As already stated, this model is general enough and considers the
effect of congestion due to limitation of ability of nodes to handle information.

In comparison with hierarchical networks, there is only one ingredient of the
communication model that needs to be reformulated. In the hierarchical version
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of the model, when a node receives a packet, it decides to send it downwards in
the right direction if the solution is there, or upward to the agent overseeing her
otherwise. This simple routing algorithm arises from the fact that we implicitly
assume that the hierarchy is not only a communicational hierarchy, but also a
knowledge hierarchy, where nodes know perfectly the structure of the network
below them. In a complex network, this informational content of the hierarchy
is lost. Here we will use Kleinberg’s approach [24]. When an agent receives a
packet, she knows the coordinates in the underlying two-dimensional space of
its destination. Therefore, she forwards the packet to the neighbor that is closer
to the destination according to the lattice distance ∆ defined in Sect. 11.2,
provided that the packet has not visited that node previously6. Note, however,
that distance refers to the two-dimensional space, but not necessarily to the
topology of the complex network and, as in Kleinberg’s work, there might be
shortcuts in directions that increase ∆. Moreover, here long range links replace
short range links and are not simply added to short range links. Therefore it is
possible that following the direction of minimization of ∆ the packet arrives to
a dead end and has to go back.

Considering this algorithm, it is interesting that the three mechanisms to
establish links (local, random and preferential) are somehow complementary. A
completely regular lattice (all links are local) contains a lot of information since
all the agents efficiently send their packets in the best possible direction. Howe-
ver, the average path length is extremely high in this networks and therefore the
number of packets that are flowing in the network at a given time is also very
high. The addition of random links can reduce dramatically the average path
length, as in small world networks. However, if the number of random links is
very high, then the number of local links is small and thus sending the packet to
the node closer to the destination is probably quite inefficient (since it is possible
that, even if it is very close in the underlying two-dimensional space, there is
no short path in the actual topology of the network). Finally, preferential links
seem to solve both problems. They obviously solve the long average path length
problem but, in addition, the loss of information is not large, since the highly
connected that actually concentrate this information. The star configuration is
an extreme example of this: although there are no local links, the central node
is capable of sending all the packets in the right directions. However, when the
amount of information to handle is big, preferential links are especially inade-
quate because highly connected nodes act as centers of congestion. Therefore,
optimal structures should be networks where all the mechanisms coexist: com-
plex networks.

11.6.3 Results

We simulate the behavior of the communication model in networks built accor-
ding to the algorithm presented in Sect. 11.4.1. First, a value of the probability
6 Packets are sent to previously visited nodes only if it is strictly necessary. This

memory restriction avoids packets getting trapped in loops
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of packet generation per node and time step, ρ, is fixed. For that particular va-
lue, we compare the performance of different networks: networks with different
preferentiallity, from random (γ = 0) to maximum centralization (γ � 1), and
with different fraction of long range links, from pure regular lattices with no
long range links (φ = 0) to networks with no local component (φ = 1). For each
collection of the parameters ρ, γ, and φ, the network load, N , is calculated and
averaged over a certain time window and over 100 realizations of the network,
so that fluctuations due to particular simulations of the packet generation and
of the network creation are minimized. As in the economics literature, the ob-
jective is to minimize the average time τ for a packet to go from the origin to
the destination.

According to Little’s Law of queuing theory [37], the characteristic time is
proportional to the average total load, N , of the network:

N

τ
= ρS ⇒ τ =

N

ρS
(11.11)

where ρ is the probability of packet generation for each node at each time step.
Thus, minimizing the average cost of a search is equivalent to minimizing the
total load N of the network.

The main results are shown in Fig. 11.6. Consider first the behavior of the
networks at low values of ρ. Figure 11.6a shows the load of the network for
ρ = 0.01 as a function of the fraction of long range links, φ, both when they are
random γ = 0 and when they are extremely preferential γ = 6. In the last case,
long range links are established only with the most connected node. In this case
of small ρ, centralization is not a big problem because congestion effects are still
not important. Therefore, preferential links are, in general, better than random
long range links. In the case of preferential links, it is interesting to understand
the behavior of the curve N(φ). For φ = 0 the network is a two-dimensional
regular lattice and then the average distance between nodes is large. As some long
range links are introduced, the average path length decreases as in the Watts-
Strogatz model [1], and therefore the load of the network is smaller because
packets reach their destination faster. However, the addition of long range links
implies the lack of local links and when φ is further increased, the heuristic of
minimizing the lattice distance ∆ becomes worse and worse. This fact explains
that for φ ≈ 0.15 (the network is similar to the one depicted in Fig. 11.6d)
the load has a local minimum that arises due to the trade-off between the two
effects of introducing long range preferential links: shortening of the distances
that tends to decrease N and destruction of the lattice structure that tends to
decrease the utility of the heuristic search and then to increase N . If φ is further
increased, one node tends to concentrate all the links and for φ = 1 (Fig. 11.6e)
the network is strictly a star with one central node and the rest connected to
it. In this completely centralized situation, the lack of two-dimensional lattice
is not important because the packets will be sent to the central node and from
there directly to the destination. Since for small ρ congestion is not an issue,
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Fig. 11.6. a and b Average number of packets flowing in the network as a function of
the fraction of preferential links: a ρ = 0.01 and b ρ = 0.03. Symbol (+) corresponds to
γ = 0 (random links) and symbol (×) corresponds to γ = 6 (extremely focused links).
Figures c, d and e show the typical shape of complex networks with particularly efficient
configurations: c γ = 0 and φ = 0.12; d γ = 6 and φ = 0.07; and e γ = 6 and φ = 1.0

this structure turns out to be even better than the locally optimal structure
with φ ≈ 0.15.

The situation is different when considering higher values of the probability
of packet generation (Fig. 11.6b displays the the results for ρ = 0.03). Regarding
preferential linking, the two locally optimal structures with φ = 0.7 and φ =
1 (Figs. 11.6d and 11.6e respectively) persist. However, in this situation and
due to congestion considerations the first is better than the second. Thus, at
some intermediate value of 0.01 < ρ < 0.03, there is a transition such that the
optimal structure changes from being the star configuration to being the mixed
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configuration with local as well as preferential links. Significantly, this transition
is sharp, meaning that there is not a continuous pass from the star to the mixed.

Beyond the behavior of networks built with preferential long range links, it is
worth noting that when the effect of the congestion is important (Fig. 11.6b), the
structure depicted in Fig. 11.6c, where the long range links are actually thrown
at random, becomes better than the structure in 11.6.d. In other words, the
optimal network is, in this case, a completely decentralized small world network
a la Watts-Strogatz.

11.7 Optimization in a General Framework

In the previous section we have compared the behavior of networks which have
been built following different rules (nearest neighbor linking, preferential attach-
ment, etc.). The main reason for focusing on a particular set of networks is that
it is very costly to compare the performance of two networks: it is necessary to
run a simulation, wait for the stationary state and calculate the average load of
the network. Specially, close to the critical point the time needed to reach the
stationary state diverges. In [22] we presented a formalism that is able to cope
with search and congestion simultaneously, allowing the determination of opti-
mal topologies. This formalism avoids the problem of simulating the dynamics
of the communication process and provides a general scenario applicable to any
communication process.

Let us focus on a single information packet at node i whose destination is
node k. The probability for the packet to go from i to a new node j in its next
movement is pkij . In particular, pkkj = 0 ∀j so that the packet is removed as soon
as it arrives to its destination. This formulation is completely general, and the
precise form of pkij will depend on the search algorithm and on the connectivity
matrix of the network. In particular, when the search is Markovian, pkij does not
depend on previous positions of the packet. In this case, the probability of going
from i to j in n steps is given by

P kij(n) =
∑

l1,l2,...,ln−1

pkil1p
k
l1l2 · · · pkln−1j . (11.12)

This definition allows us to compute the average number of times, bkij , that a
packet generated at i and with destination at k passes through j.

bk =
∞∑

n=1

P k(n) =
∞∑

n=1

(
pk
)n

= (I − pk)−1pk. (11.13)

and the effective betweenness of node j, Bj , is then defined as the sum over all
possible origins and destinations of the packets,

Bj =
∑

i,k

bkij . (11.14)
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When the search algorithm is able to find the minimum paths between nodes,
the effective betweenness will coincide with the topological betweenness, βj , as
usually defined [32, 28].

Once, these quantities have been defined, we focus on the load of the network,
N(t), which is the number of floating packets. These floating packets are stored
in the nodes that act as queues. In a general scenario where packets are generated
at random and independently at each node with a probability ρ, the arrival of
packets to a given node j is a Poisson process. In the original model presented
in Sect. 11.4 we assumed that the quality of the channels depend on both the
sender and the receiver nodes; if one assumes that it only depends on the receiver
node then the delivery of packets is also a Poisson process. In this simple picture,
the queues are called M/M/1 in the computer science literature and the average
load of the network is [37, 22]

N =
S∑

j=1

ρBj

S−1

1 − ρBj

S−1

. (11.15)

There are two interesting limiting cases of equation (11.15). When ρ is very
small, taking into account that the sum of betweennesses is proportional to
the average distance, one obtains that the load is proportional to the average
effective distance. On the other hand, when ρ approaches ρc most of the load of
the network comes from the most congested node, and therefore

N ≈ 1
1 − ρB∗

S−1

ρ → ρc, (11.16)

where B∗ is the effective betweenness of the most central node. The last results
suggest the following interesting problem: to minimize the load of a network it
is necessary to minimize the effective distance between nodes if the amount of
packets is small, but it is necessary to minimize the largest effective betweenness
of the network if the amount of packets is large. The first is accomplished by
a star-like network, that is, a network with one central node and all the others
connected to it. The second, however, is accomplished by a very decentralized
network in which all the nodes support a similar load. This behavior is similar
to any system of queues provided that the communication depends only on the
sender.

It is worth noting that there are only two assumptions in the calculations
above. The first one has already been mentioned: the movement of the packets
needs to be Markovian to define the jump probability matrices pk. Although
this is not strictly true in real communication networks—where packets are not
usually allowed to go through a given node more than once—it can be seen
as a first approximation [14, 16, 17]. The second assumption is that the jump
probabilities pkij do not depend on the congestion state of the network, although
communication protocols sometimes try to avoid congested regions, and then
Bj = Bj(ρ). However, all the derivations above will still be true in a number
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of general situations, including situations in which the paths that the packets
follow are unique, in which the routing tables are fixed, or situations in which
the structure of the network is very homogeneous and thus the congestion of all
the nodes is similar. Compared to situations in which packets avoid congested
regions, it correspond to the worst case scenario and thus provide bounds to more
realistic scenarios in which the search algorithm interactively avoids congestion.

Equation (11.15) relates a dynamical variable, the load, with the topological
properties of the network and the properties of the algorithm. So we have con-
verted a dynamical communication problem into a topological problem. Hence,
the dynamical optimization procedure of finding the structure that gives the
minimum load is reduced to a topological optimization procedure where the
network is characterized completely by its effective betweenness distribution. In
[22] we considered the problem of finding optimal structures for a purely local
search, using a generalized simulated annealing (GSA) procedure, as described
in [38, 39]. On the one side, we have found that for ρ → 0 the optimal net-
work has a star-like centralized structure as expected, which corresponds to the
minimization of the average effective distance between nodes. On the other ex-
treme, for high values of ρ, the optimal structure has to minimize the maximum
betweenness of the network; this is accomplished by creating a homogeneous
network where all the nodes have essentially the same degree, betweenness, etc.
One could expect that the transition centralized-decentralized occurs progres-
sively. Surprisingly, the results of the optimization process reveal a completely
different scenario. According to simulations, star-like configurations are optimal
for ρ < ρ∗; at this point, the homogeneous networks that minimize B∗ become
optimal. Therefore there are only two type of structures that can be optimal for
a local search process: star-like networks for ρ < ρ∗ and homogeneous networks
for ρ > ρ∗.

Beyond the existence of both centralized and decentralized optimal networks,
it is significant that the transition from one sort of networks to the other is ab-
rupt, meaning that there are no intermediate optimal structures between total
centralization and total decentralization. As already mentioned, this property is
shared by the model networks in the previous section. Our explanation of this
fact is the following. Since we are considering (in both the present and the last
sections) local knowledge of the network topology, centered star-like configura-
tions are extremely efficient in searching destinations and thus minimizing the
effective distance between nodes. This explains that stars are optimal for a wide
range of values of ρ, until the central node (or nodes) becomes congested. At
this point, structures similar to stars will have the same problem and will be
much worse regarding search; at this point, the only alternative is something
completely decentralized, where the absence of congestion can compensate the
dramatic increase in the effective distance between nodes. If this explanation is
correct, one should be able to obtain a smooth transition from centralization to
decentralization by considering global knowledge of the network, in such a way
that the average effective distance (that in this case coincides with the average
path length) is not much larger in an arbitrary network than in the star. Alt-
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a b c d

Fig. 11.7. Optimal topologies for networks with S = 32 nodes, L = 32 links and global
knowledge. a ρ = 0.010. b ρ = 0.020. c ρ = 0.050. d ρ = 0.080. In this case of global
knowledge, the transition from centralization to decentralization seems smooth

hough we do not have extensive simulations in this case, Fig. 11.7 shows that
there is some evidence to think that this is indeed the case.

11.8 Summary

We have presented some results concerning search and congestion in networks.
By defining a communication model we have been able to cope with the problems
of search and congestion simultaneously. For a hierarchical lattice some analytical
results are found, by exploiting the symmetry properties of the network. For
complex networks, this is not the case, and computational optimization to look
for the best structures is required. On the one hand, for model networks where
short-range, long-range, random and preferential connections are mixed we find
that network that perform well for very low load become easily congested when
the load is increased. On the other hand, when searching for optimal structures in
a general scenario there is a clear transition from star-like centralized structures
to homogeneous decentralized ones.
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Abstract. By use of a stochastic generalization of the Hodgkin-Huxley model we inve-
stigate the phenomenon of Stochastic Resonance (SR) for a distribution of ion channels
within a cluster of variable size. In the presence of a periodic stimulus we demonstrate
intrinsic SR vs. decreasing patch size, or, put differently, vs. increasing internal noise
strength. SR with external noise occurs only for large cluster sizes which possess sub-
optimal internal noise levels. In particular, SR in biology thus seemingly is rooted in
the collective properties of optimally selected ion channel assemblies. Moreover, upon
investigating the signal-to-noise ratio (SNR) for sub-threshold sinusoidal driving vs.
driving frequency we encounter also a stochastic resonance behavior which reflects the
existence of a random internal limit cycle. The occurrence of intrinsic SR in a combina-
tion with the conventional frequency resonance may be of importance for the frequency
tuning in biological signal processing.

12.1 Introduction

Much attention is presently given to the behavior of complex networks with the
particular focus being on so termed scale-free networks, which are believed to
present many complex phenomena in nature [1, 2, 3, 4, 5, 6, 7]. Such networks
naturally also occur in biological settings. In this spirit we focus here on the
constructive role of noise on voltage gated, globally connected assemblies of ion
channels. If the distribution of such ion channels consists of at least two types,
excitable behavior becomes possible which in turn rules the transduction of bio-
logical information. The transduction of signals in presence of ambient, internal
noise then likely makes use of a cooperative behavior between nonlinearity and
noise, known under the label of Stochastic Resonance [8].

During the last decade, the effect of Stochastic Resonance (SR) – a coopera-
tive phenomenon wherein the addition of external noise improves the detection
and transduction of signals in nonlinear systems (for comprehensive surveys and
relevant further references, see in [8, 9]) – has been studied experimentally and
theoretically in various biological systems [10, 11, 12, 13, 14]. For example, SR
has been experimentally demonstrated within the mechanoreceptive system in
crayfish [10], in the cricket cercal sensory system [11], for human tactile sensa-
tion [12], visual perception [13], and response behavior of the arterial baroreflex
system of humans [14]. The importance of this SR-phenomenon for sensory bio-
logy is by now well established; yet, it is presently not known to which minimal
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level of the biological organization the stochastic resonance effect can ultimately
be traced down. Presumably, SR has its origin in the stochastic properties of the
ion channel clusters located in a receptor cell membrane. Indeed, for an artificial
model system Bezrukov and Vodyanoy have demonstrated experimentally that a
finite ensemble of the alamethicin ion channels does exhibit stochastic resonance
[15]. This in turn provokes the question whether a single ion channel is able to
exhibit SR, or whether stochastic resonance is the result of a collective response
from a finite assembly of channels.

Stochastic resonance in single, biological potassium ion channels has also
been investigated both theoretically [16] and experimentally [17]. Thus far, the
experimental work did not convincingly reveal SR in single voltage-sensitive
ion channels versus the varying temperature. Nevertheless, the SR phenomenon
versus the externally added noise can occur in single ion channels if only the
parameters are within a regime where the channel is predominantly dwelled
in the closed state, as demonstrated within a theoretical modeling for a Shaker
potassium channel [16]. The manifestation of SR on the single-molecular level, is
not only of academic interest, but is also relevant for potential nano-technological
applications, such as the design of single-molecular bio-sensors. The origin and
biological relevance of SR in single ion channels, however, remains still open.

Indeed, biological SR is a manifestation of collective properties of large assem-
blies of ion channels of different sorts. To display the phenomenon of excitability
these assemblies must contain an assemblage of ion channels of at least two dif-
ferent sorts – such as, e.g., potassium and sodium channels. The corresponding
mean-field model has been put forward by Hodgkin and Huxley as early as in
1952 [18] by neglecting the intrinsic fluctuations which originate from the sto-
chastic opening and closing of channels. SR due to external noise in this primary
model and related models of excitable dynamics has extensively been addressed
[19, 20]. A challenge though still remains: does internal noise play a constructive
role for SR? Internal noise is produced by fluctuation of the number of open
channels within the assembly, and diminishes with increasing number of chan-
nels. For a large, macroscopic number of channels this noise becomes negligible.
Under the realistic biological conditions, however, it may play an important role
[21].

12.2 The Hodgkin-Huxley Model

Our starting point is the well-established model of Hodgkin and Huxley [18]. The
membrane patch of area S is considered as an electrical capacitor possessing the
specific area capacitance C. The membrane separates two ionic bath solutions
(which in vivo correspond to the interior and the exterior of the excitable cell)
with different concentrations of the ions of different sorts, mainly potassium, K+,
sodium, Na+, and chloride, Cl− ions. The macroscopic concentration differences
are kept approximately constant. In the cell, this task is accomplished by the
ATP-driven ionic pumps. Furthermore, the ionic baths are on the average electri-
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cally neutral. However, due to the different ionic concentrations on the opposite
sides of the semi-permeable membrane, the membrane becomes charged. As a
consequence, an equilibrium transmembrane electrical potential difference emer-
ges. The lipid membrane creates an almost impenetrable barrier for the ions.
However, they can flow across the membrane through special ion selective pores
created by specialized membrane proteins – the ion channels [22]. The specific
potassium, IK , and sodium, INa, ion currents through the open ion channels are
approximately proportional to the differences of the transmembrane potential V
and the specific (for the particular sort of ions) equilibrium potentials, EK and
ENa, respectively. The stochastically averaged, mean conductances, GNa(m,h)
and GK(n), are, however, strongly nonlinear functions of V . This nonlinearity
emerges due to the gating dynamics (see below). There exists also the leakage
current IL, mainly due to the chloride ions. If the membrane is driven by the
external current Iext(t), the sum of the specific ion currents and the capacitive
current, IC , must be equal to Iext(t) as a consequence of the charge conservation.
Therefore, the equation for the transmembrane potential V (t) reads

C
d

dt
V +GK(n) (V − EK) +GNa(m,h) (V − ENa)

+GL (V − EL) = Iext(t) . (12.1)

For a squid giant axon, the parameters in eq. (12.1) are ENa = 50 mV,
EK = −77 mV, EL = −54.4 mV, and C = 1µF/cm2. Furthermore, the leakage
conductance is assumed to be constant, GL = 0.3 mS/cm2. On the contrary, the
sodium and potassium conductances are controlled by the voltage-dependent ga-
ting dynamics of single ion channels and are proportional to their respective num-
bers. These latter assumptions have been fully confirmed in the single-channel
recordings by Neher, Sakmann and colleagues which indeed have proven that
ion channels undergo the opening-closing stochastic gating dynamics [23]. In the
Hodgkin-Huxley model, the opening of the potassium ion channel is governed by
four identical activation gates characterized by the opening probability n. The
channel is open when all four gates are open. In the case of sodium channel, the
dynamics is governed by the three independent, identical fast activation gates
(m) and an additional slow, so-termed inactivation gate (h). The independence
of the gates implies that the probability PK,Na of the occurrence of the con-
ducting conformation is PK = n4 for a potassium channel and PNa = m3 h for
a sodium channel, respectively. In the mean-field description, the macroscopic
potassium and sodium conductances thus read:

GK(n) = gmax
K n4, GNa(m,h) = gmax

Na m3h , (12.2)

where gmax
K = 36 mS/cm2 and gmax

Na = 120 mS/cm2 denote the maximal conduc-
tances (when all channels are open). The two-state, open–closing dynamics of
the gates is given by the voltage dependent opening and closing rates αx(V ) and
βx(V ) (x = m,h, n), i.e.
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αm(V ) =
0.1(V + 40)

1 − exp[−(V + 40)/10]
, (12.3a)

βm(V ) = 4 exp[−(V + 65)/18] , (12.3b)
αh(V ) = 0.07 exp[−(V + 65)/20], (12.3c)

βh(V ) = {1 + exp[−(V + 35)/10]}−1 , (12.3d)

αn(V ) =
0.01 (V + 55)

1 − exp[−(V + 55)/10]
, (12.3e)

βn(V ) = 0.125 exp[−(V + 65)/80] . (12.3f)

Hence, the dynamics of the opening probabilities for the gates are given by:

ẋ = αx(V ) (1 − x) − βx(V ) x, x = m,h, n . (12.4)

The voltage equation (12.1), (12.2) and the rate equations of the gating dynamics
(12.3), (12.4) define the original, purely deterministic Hodgkin–Huxley model
[18] for the squid giant axon.

The rate constants in (12.3) are given in ms−1 and the voltage in mV . These
nonlinear Hodgkin-Huxley equations (12.1)–(12.3) present a cornerstone model
in neurophysiology. Within the same line of reasoning this model can be ge-
neralized to a mixture of different ion channels with various gating properties
[24, 25].

The dynamics of the Hodgkin-Huxley model exhibits a complex, rich behavior
which sensitively depends on the model parameters. For the squid giant axon pa-
rameters, the corresponding dynamics possesses a single fixed point and therefore
does not exhibit a spiking activity in the absence of external stimulus, Iext(t) = 0.
However, if a constant stimulus, Iext(t) = I0, is applied, the fixed point loses its
stability with increasing strength I0 upon I0 ≥ I1 ≈ 9.763 µA/cm2. For such
a super-threshold current strength, the membrane exhibits a periodic spiking
activity which reflects the presence of a stable limit cycle, see Fig. 12.1a. Upon
decreasing the driving current strength, the spiking dynamics still persists below
the threshold for excitation, i.e. also for I < I1, until the diminishing current
reaches the sub-critical value I2 ≈ 6.26 µA/cm2. Below this value, the limit cycle
loses stability and the spiking activity vanishes. In conclusion, for I2 < I0 < I1
both the stable fixed point and the stable limit cycle can indeed coexist. This
feature is thus responsible for the hysteresis behavior in the spiking behavior
versus the varying driving current strength, cf. Fig. 12.1a.

Next we focus on a periodic sinusoidal driving,

Iext(t) = A sin(Ωt) , (12.5)

with amplitude strength A and angular driving frequency Ω, see also in [26].
The corresponding dynamics becomes now even richer. In this case of periodic
driving, the firing threshold Ath becomes frequency-dependent. The correspon-
ding complexity for the phase diagram is depicted in Fig. 12.1b. In Fig. 12.1b,
the border line Ath(Ω) which separates the regime of no spiking from the regime
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Fig. 12.1. The bifurcation diagram for the emergence of spiking behavior for the
deterministic Hodgkin-Huxley model. The equilibrium voltage (fixed point) and the
minimal and maximal voltage amplitudes, respectively, of the limit cycle oscillations
are plotted in part a against the constant driving current strength. There exists a
hysteretic behavior for the range 6.26 < Iext < 9.763 µA/cm2 where the stable limit
cycle exhibiting firing events and the stable fixed point coexist. b In the regime of
periodic sinusoidal driving the situation is rather complex as well: a phase diagram
is plotted as a function of the driving frequency Ω and the corresponding threshold
amplitude Ath for firing. The solid line separates the phase with firing events (grey
region) from the phase without spike occurrences (white region) for the case when the
amplitude is correspondingly increased from zero. Upon starting from the regime with
spiking the dotted line gives the phase separation line when the transition into the
no-firing regime occurs. This reflects a typical hysteretic character

with an assured spiking behavior exhibits a hysteresis-like character. The solid
line in Fig. 12.1b marks the transition to spiking when the driving strength is
successively increased from zero driving strength. The occurrence of a minimum
in this figure is quite remarkable: It implies that the system possesses an internal
resonance frequency. This feature can be used for signal processing [20, 26].

12.3 Stochastic Version of the Hodgkin-Huxley Model

It has been suspected since the time of Hodgkin and Huxley, and known with
certainty since the first single-channel recordings of Neher, Sakmann and col-
leagues, that voltage-gated ion channels are stochastic devices [23]. An essential
drawback of the Hodgkin-Huxley model, however, is that it operates with the
average number of open channels, thereby disregarding the corresponding num-
ber fluctuations (or, the so-called channel noise [23, 21]). These fluctuations, i.e.
their strength, scale inversely proportional to the number of ion channels, see
below. Thus, the original Hodgkin-Huxley model can be valid, strictly speaking,
only within the limit of very large system size. We emphasize, however, that the
size of an excitable membrane patch within a neuron is typically finite.



200 G. Schmid, I. Goychuk, and P. Hänggi

Fig. 12.2. Sketch of a membrane patch with po-
tassium (white filled circles) and sodium (black
filled circles) ion channels. The grey background
indicates the leakage caused by additional non-
voltage dependent channels. The ion channels in-
teract only globally, through the membrane vol-
tage

In a small spherical neuron about 10 µm in diameter, the membrane area is
about 300 µm2. Therefore, for a modest channel density of ρ = 30 µm−2 there
should be about N = 9000 ion channels. The ratio of the standard deviation to
the mean conductance of the whole ensemble of identical channels, which is δG =√

(1 − Po)/(PoN), where Po the stationary opening probability of a channel
(see, e.g., in [21]), scales as δG ∝ 1/

√
N with the number N of ion channels.

Therefore, the conductance fluctuations may become appreciable for a small
cell. These fluctuations can also play a functional role [21]. Besides, the spatial
distribution of channels in receptor cell membranes is highly inhomogeneous and
occurs in the form of clusters (see, e.g., an example in [27]) which are electrically
coupled through the electrically passive pieces of membrane. As a consequence,
the role of internal fluctuations cannot be a priori neglected [21]. As a matter
of fact, as shown below, they can play a key role for SR in realistically small
isolated clusters of ion channels like in Fig. 12.2.

12.3.1 Quantifying Channel Noise

The role of channel noise for the neuron firing has been first studied by Lecar and
Nossal as early as in 1971 [28]. The corresponding stochastic generalizations of
Hodgkin-Huxley model (within a kinetic model which corresponds to the above
given description) has been put forward by DeFelice et al. [29] and others; see
[21] for a review and further references therein. The main conclusion of these
previous studies is that the channel noise can be functionally important for
neuron dynamics. In particular, it has been demonstrated that channel noise
alone can give rise to a spiking activity even in the absence of any stimulus
[21, 29, 30], see also in Fig. 12.3.

To include the channel noise influence in a theoretical modeling within the
stochastic kinetic schemes [21, 29], however, necessitates extensive numerical si-
mulations [31]. To aim at a less cumbersome numerical scheme we use a short-cut
procedure that starts from (12.4) in order to derive a corresponding set of Lange-
vin equations for a stochastic generalization of the Hodgkin-Huxley equations of
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Fig. 12.3. Numerical simulation of
the stochastic Hodgkin-Huxley system
(12.1), (12.6), (12.7) with vanishing ex-
ternal stimulus. We computed several
realizations of the voltage signal for
different numbers of the ion channels:
a NNa = 6000, NK = 1800; b NNa =
600, NK = 180; and c NNa = 60,
NK = 18. Upon decreasing the system
size the influence of channel noise on the
spontaneous firing dynamics becomes
more and more pronounced. Note that
the non-stochastic Hodgkin-Huxley mo-
del does not exhibit spikes at all for the
parameters given in the text and in the
absence of external stimuli

the type put forward by Fox and Lu [32]. Following their reasoning we substitute
the equations (12.4) with the corresponding Langevin generalization:

ṁ = αm(V ) (1 −m) − βm(V ) m+ ξm(t) ,
ḣ = αh(V ) (1 − h) − βh(V ) h+ ξh(t) , (12.6)
ṅ = αn(V ) (1 − n) − βn(V ) n+ ξn(t) ,

with independent Gaussian white noise sources of vanishing mean. The noise
autocorrelation functions depend on the stochastic voltage and the corresponding
total number of ion channels as follows:

〈ξm(t)ξm(t′)〉 =
2

NNa

αmβm
(αm + βm)

δ(t− t′) ,

〈ξh(t)ξh(t′)〉 =
2

NNa

αhβh
(αh + βh)

δ(t− t′) , (12.7)

〈ξn(t)ξn(t′)〉 =
2
NK

αnβn
(αn + βn)

δ(t− t′) .

In order to confine the conductances between the physically allowed values bet-
ween 0 (all channels are closed) and gmax (all channels are open) we have im-
plemented numerically the constraint of reflecting boundaries so that m(t), h(t)
and n(t) are always located between zero and one [32].

Moreover, the numbers NNa and NK depend on the actual area S of the
membrane patch. With the assumption of homogeneous ion channels densities,
ρNa = 60 µm−2 and ρK = 18 µm−2, the following scaling behavior follows:

NNa = ρNaS, NK = ρKS . (12.8)
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Upon decreasing the system size S, the fluctuations and, hence, the internal noise
increases. Consequently, with abating cell membrane patch the spiking behavior
changes dramatically, cf. Fig. 12.3.

The numerical integration is carried out by the standard Euler algorithm
with the step size ∆t ≈ 2 · 10−3 ms. The ”Numerical Recipes” routine ran2
is used for the generation of independent random numbers [33] with the Box-
Muller algorithm providing the Gaussian distributed random numbers. The total
integration time is chosen to be a multiple of the driving period TΩ = 2π/Ω, as
to ensure that the spectral line of the driving signal is centered on a computed
value of the power spectral densities. From the stochastic voltage signal V (t) we
extract a point process of spike occurrences {ti}:

u(t) :=
N∑

i=1

δ(t− ti) , (12.9)

where N is the total number of spikes occurring during the elapsed time interval.
The occurrence of a spike in the voltage signal V (t) is detected by upward-
crossing a certain detection threshold value V0. Obviously, the threshold can be
varied over a wide range with no effect on the resulting spike train dynamics.

The power spectral density of the spike train (PSDu) has been analyzed in the
absence and in the presence of periodic stimulus and noise. In order to quantify
SR, we obtain from the PSDu the spectral power of the transmitted periodic
signal, η, as the difference between the peak value of the spectral line and its
background offset located at the driving frequency Ω. The another important
measure, signal-to-noise ratio (SNR), is then given by the ratio of the spectral
power of signal to the background offset (in the units of spectral resolution of
signals).

12.3.2 Stochastic Resonance

First, we focus our attention on SR in absence of external noise, see Fig. 12.4a
and Fig. 12.5a. Here, we discover the novel effect of genuine intrinsic stocha-
stic resonance, where the response of the system to the sub-threshold external
stimulus is optimized solely due to internal, ubiquitous noise. For the given pa-
rameters, SR in the spectral amplification of signal occurs at S ≈ 10 µm2 and in
the signal-to-noise ratio at a different value S ≈ 32 µm2. Starting from S ≈ 10
µm2, growing internal noise monotonically deteriorates the amplitude of system
response at the signal frequency. Moreover, upon reaching S ≈ 32 µm2 it de-
teriorates the quality of signal transduction which is measured by SNR. In this
respect, it is worth mentioning that SNR also measures in effect the rate of
information transfer [34], but for small-amplitude signals only [35].

Under such circumstances, one would predict that the addition of an external
noise (which corresponds to the conventional situation in biological SR studies)
cannot improve η and SNR further, i.e. conventional SR will not be exhibited.
In order to verify this prediction, we contaminated the periodic stimulus (12.5)
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Fig. 12.4. The spectral amplification η of an external sinusoidal stimulus with am-
plitude A = 1.0 µA/cm2 and angular frequency Ω = 0.3 ms−1 for different observation
areas: a no external noise is applied; b SNR versus the external noise for the system
sizes indicated by the arrows in Fig. 12.5a: S = 8 µm2, solid line through the diamonds;
S = 16 µm2, long dashed line connecting the circles; S = 32 µm2, short dashed line
through the triangles; S = 64 µm2, dotted line connecting the squares. The situation
with no internal noise (i.e., formally S → ∞) is depicted by the dotted line connecting
the filled dots
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Fig. 12.5. The signal-to-noise ratio (SNR) for the same parameters as in Fig. 12.4

by the addition of Gaussian white noise ζ(t). The latter one possesses the auto-
correlation function

〈ζ(t)ζ(t′)〉 = 2Dext δ(t− t′) , (12.10)

and the noise strength Dext. The corresponding results, depicted in Fig. 12.4b
and Fig. 12.5b, fully confirm the above prediction. Conventional stochastic re-
sonance therefore occurs only for large membrane patches beyond optimal sizes
and reaches saturation in the limit S → ∞ (limit of the deterministic Hodgkin-
Huxley model). Thus, the observed biological SR [10, 11] is rooted in the collec-
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Fig. 12.6. The signal-to-noise ratio (SNR) for a sub-threshold external stimulus
with amplitude A = 1.0 µA/cm2 and different angular frequencies: a SNR versus the
observation area for Ω = 0.3 ms−1 (dotted line through the triangles), Ω = 0.4 ms−1

(solid line connecting the squares), and Ω = 0.5 ms−1 (dashed line through the circles);
b SNR versus the driving frequency for two areas (S = 8 µm2, dotted line; S = 32 µm2,
solid line), depicted by vertical lines in Fig. 12.6a. The curves exhibit clear maxima and,
therefore, a combination of the stochastic resonance with the conventional frequency
resonance takes place

tive properties of large ion channels arrays, where ion channels are globally
coupled via the common membrane potential V (t).

In addition, by changing the driving frequency we rediscover the effect of
combined stochastic resonance and conventional resonance [20, 26], cf. Fig. 12.6.
In other words, SNR becomes optimized not only versus the patch size, but
also versus the driving frequency. Moreover, due to the noisy character of ga-
ting variables, the mean frequency of a corresponding random limit cycle in the
stochastic Hodgkin-Huxley model (12.1),(12.6),(12.7) depends on the membrane
patch area. Thus, the maxima of SNR are located for various system sizes at
different driving frequencies. This effect may be used for frequency tuning in the
biological signal transduction.

12.4 Conclusions

In conclusion, we have investigated the stochastic resonance in a noisy gene-
ralization of the Hodgkin-Huxley model. The spontaneous fluctuations of the
membrane conductivity due to the individual ion channel dynamics has syste-
matically been taken into account. We have shown that the excitable membrane
patches exhibit a spontaneous spiking activity due to the omnipresent internal
noise.

The main result of this study refers to the phenomenon of intrinsic SR. Here,
the channel noise alone gives rise to SR behavior, cf. Fig. 12.4a and Fig. 12.5a
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(see also [31]). Moreover, such intrinsic SR becomes optimized versus the dri-
ving angular frequency, cf. Fig. 12.6. Conventional SR versus the external noise
intensity also takes place, but for sufficiently large membrane patches, where the
internal noise strength alone is not yet at its optimal value. We thus conclude
that the observed biological SR likely is rooted in the collective properties of
globally coupled ion channel assemblies.

The authors gratefully acknowledge support for this work by the Deutsche
Forschungsgemeischaft, SFB 486 Manipulation of matter on the nanoscale, pro-
ject A10.
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